Abstract
Agent-based models tend to be more and more complex. In order to cope with this increase of complexity, powerful modeling and simulation tools are required. These last years have seen the development of several platforms dedicated to the development of agent-based models. While some of them are still limited to the development of simple models, others allow to develop rich and complex models. Among them, the GAMA modeling and simulation platform is aimed at supporting the design of spatialized, multiple-paradigms and multiple-scales models. Several papers have already introduced GAMA, notably in earlier PRIMA conferences, and we would like, in this paper, to introduce the new features provided by GAMA 1.6, the latest revision to date of the platform. In particular, we present its capabilities concerning the tight combination of 3D visualization, GIS data management, and multi-level modeling. In addition, we present some examples of real projects that rely on GAMA to develop complex models.
Keywords
- Agent-based modeling
- simulation
- GIS
- multi-level
- ODE
- platform
- visualization
- complex systems
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Apolloni, A., Poletto, C., Colizza, V., et al.: Age-specific contacts and travel patterns in the spatial spread of 2009 h1n1 influenza pandemic. BMC Infectious Diseases 13(1), 1–18 (2013)
Araujo, F., Valente, J., Al-Zinati, M., Kuiper, D., Zalila-Wenkstern, R.: Divas 4.0: A framework for the development of situated multi-agent based simulation systems. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, AAMAS 2013, pp. 1351–1352. International Foundation for Autonomous Agents and Multiagent Systems (2013)
Axelrod, R.M.: The complexity of cooperation: Agent-based models of competition and collaboration. Princeton University Press (1997)
Banos, A., Marilleau, N.: Improving individual accessibility to the city: An agent-based modelling approach. In: ECCS (2012)
Colizza, V., Vespignani, A.: Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations. Journal of Theoretical Biology 251(3), 450–467 (2008)
Crooks, A.T., Castle, C.J.E.: Agent-Based Models of Geographical Systems. Springer Netherlands, Dordrecht (2012)
Daniel Kornhauser, U.W., Rand, W.: Design Guidelines for Agent Based Model Visualization. Journal of Artificial Societies and Social Simulation 12(2) (2009)
De Wolf, T., Holvoet, T.: Emergence versus self-organisation: Different concepts but promising when combined. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2005. LNCS (LNAI), vol. 3464, pp. 1–15. Springer, Heidelberg (2005)
Drogoul, A., Amouroux, E., Caillou, P., Gaudou, B., Grignard, A., Marilleau, N., Taillandier, P., Vavasseur, M., Vo, D.A., Zucker, J.D.: Gama: multi-level and complex environment for agent-based models and simulations. In: AAMAS 2013, pp. 1361–1362. International Foundation for Autonomous Agents and Multiagent Systems (2013)
Edmonds, B., Moss, S.: From KISS to KIDS – an ‘Anti-simplistic’ modelling approach. In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS (LNAI), vol. 3415, pp. 130–144. Springer, Heidelberg (2005)
Gaudou, B., Sibertin-Blanc, C., Thérond, O., Amblard, F., Arcangeli, J.P., Balestrat, M., Charron-Moirez, M.H., Gondet, E., Hong, Y., Louail, T., Mayor, E., Panzoli, D., Sauvage, S., Sanchez-Perez, J., Taillandier, P., Nguyen, V.B., Vavasseur, M., Mazzega, P.: The MAELIA multi-agent platform for integrated assessment of low-water management issues (regular paper). In: International Workshop on Multi-Agent-Based Simulation (MABS), Saint-Paul, MN, USA. Springer (2013)
Gil-Quijano, J., Louail, T., Hutzler, G.: From biological to urban cells: lessons from three multilevel agent-based models. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS, vol. 7057, pp. 620–635. Springer, Heidelberg (2012)
Grignard, A., Drogoul, A., Zucker, J.D.: A model-view/controller approach to support visualization and online data analysis of agent-based simulation. In: Proceedings of 2013 IEEE RIVF (2013)
Grignard, A., Drogoul, A., Zucker, J.-D.: Online analysis and visualization of agent based models. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 662–672. Springer, Heidelberg (2013)
Hanski, I.: Metapopulation Ecology. Oxford University Press (1999)
Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London 115(772), 700–721 (1927)
Lamarche-Perrin, R., Demazeau, Y., Vincent, J.-M.: How to Build the Best Macroscopic Description of your Multi-agent System? In: Demazeau, Y., Ishida, T., Corchado, J.M., Bajo, J. (eds.) PAAMS 2013. LNCS, vol. 7879, pp. 157–169. Springer, Heidelberg (2013)
Le Page, C., Bousquet, F., Bakam, I., Bah, A., Baron, C.: Cormas: A multiagent simulation toolkit to model natural and social dynamics at multiple scales. In: Proceedings of Workshop “The Ecology of Scales”, Wageningen, The Netherlands (2000)
Lotka, A.J.: Contribution to the theory of periodic reactions. The Journal of Physical Chemistry 14(3), 271–274 (1909)
Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multiagent simulation environment. Simulation 81(7), 517–527 (2005)
Morvan, G.: Multi-level agent-based modeling-bibliography. arXiv preprint arXiv:1205.0561 (2013)
Nguyen, T.N.A., Zucker, J.D., Nguyen, H.D., Drogoul, A., Vo, D.A.: A hybrid macro-micro pedestrians evacuation model to speed up simulation in road networks. In: Dechesne, F., Hattori, H., ter Mors, A., Such, J.M., Weyns, D., Dignum, F. (eds.) AAMAS 2011 Workshops. LNCS, vol. 7068, pp. 371–383. Springer, Heidelberg (2012)
North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M., Sydelko, P.: Complex adaptive systems modeling with repast simphony. Complex Adaptive Systems Modeling 1(1), 1–26 (2013)
Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based Simulation Platforms: Review and Development Recommendations. Simulation, 609–623 (2006)
Servat, D., Perrier, E., Treuil, J.-P., Drogoul, A.: When agents emerge from agents: Introducing multi-scale viewpoints in multi-agent simulations. In: Sichman, J.S., Conte, R., Gilbert, N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp. 183–198. Springer, Heidelberg (1998)
Taillandier, P., Vo, D.-A., Amouroux, E., Drogoul, A.: GAMA: A simulation platform that integrates geographical information data, agent-based modeling and multi-scale control. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS, vol. 7057, pp. 242–258. Springer, Heidelberg (2012)
Taillandier, P., Thérond, O., Gaudou, B.: A new BDI agent architecture based on the belief theory. Application to the modelling of cropping plan decision-making (regular paper). In: International Environmental Modelling and Software Society (iEMSs), Leipzig, Germany, July 1-5 (2012)
Tisue, S., Wilensky, U.: Netlogo: A simple environment for modeling complexity. In: International Conference on Complex Systems, pp. 16–21 (2004)
Treuil, J.P., Drogoul, A., Zucker, J.D.: Modélisation et simulation à base d’agents: exemples commentés, outils informatiques et questions théoriques. Dunod (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grignard, A., Taillandier, P., Gaudou, B., Vo, D.A., Huynh, N.Q., Drogoul, A. (2013). GAMA 1.6: Advancing the Art of Complex Agent-Based Modeling and Simulation. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds) PRIMA 2013: Principles and Practice of Multi-Agent Systems. PRIMA 2013. Lecture Notes in Computer Science(), vol 8291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44927-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-44927-7_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-44926-0
Online ISBN: 978-3-642-44927-7
eBook Packages: Computer ScienceComputer Science (R0)