Skip to main content

Quantum Dot-Electrochemiluminescence-Based Biosensing

  • Chapter
  • First Online:
Quantum Dots for DNA Biosensing

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 1195 Accesses

Abstract

As newly developed inorganic materials, quantum dots (QDs) have received considerable attention because of their unique nanorelated properties including high quantum yield, simultaneous excitation with multiple fluorescence colors, and electrochemical properties. This chapter presents a general description of the electrochemiluminescence (ECL) related to QDs and their analytical application. QDs including Si nanopaticles, semiconductor nanocrystals (NCs) and recent emerged novel QDs such as graphene QDs were discussed about their ECL behaviors and mechanisms. By utilization of this excellent property, new developments and improvements of its application in DNA-based analysis are discussed. Different types of QDs with different strategies for the DNA-biosensing constructions were expatiated and compared in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1297

    Article  CAS  Google Scholar 

  2. Myung N, Lu X, Johnston KP, Bard AJ (2004) Electrogenerated Chemiluminescence of Ge Nanocrystals. Nano Lett 4:183–185

    Article  CAS  Google Scholar 

  3. Hercules DM (1964) Chemiluminescence resulting from electrochemically generated species. Science 145:808–809

    Article  CAS  Google Scholar 

  4. ViscoR E, Chandross EA (1964) Electroluminescence in solutions of aromatic hydrocarbons. J Am Chem Soc 86:5350–5351

    Article  Google Scholar 

  5. Santhanam KS, Bard AJ (1965) Chemiluminescence of electrogenerated 9,10-diphenylanthracene anion radical. J Am Chem Soc 87:139–140

    Article  CAS  Google Scholar 

  6. Bertolino C, MacSweeney M, Tobin J, O’Neill B, Sheehan MM, Coluccia S, Berney H (2005) A monolithic silicon based integrated signal generation and detection system for monitoring DNA hybridisation. Biosens Bioeletron 21:565–573

    Article  CAS  Google Scholar 

  7. Zhan W, Bard AJ (2007) Electrogenerated chemiluminescence 83 immunoassay of human c-reactive protein by using \( {\text{Ru}}{\left( {\text{bpy}} \right)_{3}}^{2 + } \)-encapsulated liposomes as labels. Anal Chem 79:459–463

    Google Scholar 

  8. Ryoji K, Kumi A, Kohei N, Dai K, Osamu N (2010) Development of electrogenerated chemiluminescence-based enzyme linked immunosorbent assay for Sub-pM detection. Anal Chem 82:1692–1697

    Article  Google Scholar 

  9. Liu X, Ju HX (2008) Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle. Anal Chem 80:5377–5382

    Article  CAS  Google Scholar 

  10. Jie GF, Zhang JJ, Wang DC, Cheng C, Chen HY, Zhu JJ (2008) Electrochemiluminescence immunosensor based on CdSe nanocomposites. Anal Chem 80:4033–4039

    Article  CAS  Google Scholar 

  11. Rivera VR, Gamez FJ, Keener WK, Poli MA (2006) Rapid detection of clostridium botulinum toxins A, B, E, and F in clinical samples, selected food matrices, and buffer using paramagnetic bead-based electrochemiluminescence detection. Anal Biochem 353:248–256

    Article  CAS  Google Scholar 

  12. Luo LR, Zhang ZJ, Chen LJ, Ma LF (2006) Chemiluminescent imaging detection of staphylococcal enterotoxin C1 in milk and water samples. Food Chem 97:355–360

    Article  CAS  Google Scholar 

  13. Bruno JG, Kiel JL (1999) In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens Bioelectron 14:457–464

    Article  CAS  Google Scholar 

  14. Wolter A, Niessner R, Seidel M (2008) Detection of Escherichia coli O157:H7, Salmonella typhimurium, and Legionella pneumophila in Water Using a flow-through chemiluminescence microarray readout system. Anal Chem 80:5854–5863

    Article  CAS  Google Scholar 

  15. Zhang J, Qi HL, Li Y, Yang J, Gao Q, Zhang CX (2008) Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex. Anal Chem 80:2888–2894

    Article  CAS  Google Scholar 

  16. Huang HP, Li JJ, Zhu JJ (2011) Electrochemiluminescence based on quantum dots and their analytical application. Anal Methods 3:33–42

    Article  CAS  Google Scholar 

  17. Hu LZ, Bian Z, Li HJ, Han S, Yuan YL, Gao LX, Xu GB (2009) [Ru(bpy)2dppz]2+ electrochemiluminescence switch and its applications for DNA interaction study and label-free ATP aptasensor. Anal Chem 81:9807–9811

    Article  CAS  Google Scholar 

  18. Yin XB, Xin YY, Zhao Y (2009) Label-Free electrochemiluminescent aptasensor with attomolar mass detection limits based on a \( {\text{Ru}}{\left( {\text{phen}} \right)_{3}}^{2 + } \)-double-strand DNA composite film electrode. Anal Chem 81:9299–9305

    Google Scholar 

  19. Kulmala S, Ala-Kleme T, Vare L, Helin M, Lehtinen T (1999) Hot electron-induced electrogenerated luminescence of Tl(I) at disposable oxide-covered aluminum electrodes. Anal Chim Acta 398:41–47

    Article  CAS  Google Scholar 

  20. Kankare J, Falden K, Kulmala S, Haapakka K (1992) Cathodically induced time-resolved lanthanide(III) electroluminescence at stationary aluminium disc electrodes. Anal Chim Acta 256:17–28

    Article  CAS  Google Scholar 

  21. Kankare J, Haapakka K, Kulmala S, Nanto V, Eskola J, Takalo H (1992) Immunoassay by time-resolved electrogenerated luminescence. Anal Chim Acta 266:205–212

    Article  CAS  Google Scholar 

  22. Miao W (2007) Electrogenerated chemiluminescence. In: Zoski CG (ed). Handbook of electrochemistry. Elsevier, The Netherlands

    Google Scholar 

  23. MChang M, Saji T, Bard AJ (1977) Electrogenerated chemiluminescence 30 electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions. J Am Chem Soc 99:5399–5403

    Article  Google Scholar 

  24. Rubinstein I, Bard AJ (1981) Electrogenerated chemiluminescence 37 Aqueous ecl systems based on tris(2,2′-bipyridine) ruthenium(2+) and oxalate or organic acids. J Am Chem Soc 103:512–516

    Article  CAS  Google Scholar 

  25. Bae Y, Lee DC, Rhogojina EV, Jurbergs DC, Korgel BA, Bard AJ (2006) Electrochemistry and electrogenerated chemiluminescence of films of silicon nanoparticles in aqueous solution. Nanotechnology 17:3791

    Article  CAS  Google Scholar 

  26. Bae Y, Myung N, Bard AJ (2004) Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett 4:1153–1161

    Article  CAS  Google Scholar 

  27. Sun LF, Bao L, Hyun BR, Bartnik AC, Zhong YW, Reed JC, Pang DW, Abruña HD, Malliaras GG, Wise FW (2009) Electrogenerated chemiluminescence from PbS quantum dots. Nano Lett 9:789–793

    Article  CAS  Google Scholar 

  28. Myung N, Ding Z, Bard AJ (2002) Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett 2:1315–1319

    Article  CAS  Google Scholar 

  29. Myung N, Bae Y, Bard AJ (2003) Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett 3:1053–1055

    Article  CAS  Google Scholar 

  30. Shen L, Cui X, Qi H, Zhang C (2007) Electrogenerated chemiluminescence of ZnS nanoparticles in alkaline aqueous solution. J Phys Chem C 111:8172–8175

    Article  CAS  Google Scholar 

  31. Bard AJ, Ding Z, Myung N (2005) Electrochemistry and electrogenerated chemiluminescence of semiconductor nanocrystals in solutions and in films. Struct Bond 118:1–57

    CAS  Google Scholar 

  32. Liu X, Jiang H, Lei JP, Ju HX (2007) Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal Chem 79:8055–8060

    Article  CAS  Google Scholar 

  33. Jiang H, Ju HX (2007) Enzyme–quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates. Chem Commun 4:404–406

    Article  Google Scholar 

  34. Lu C, Wang XF, Xu JJ, Chen HY (2008) Electrochemical modulation of electrogenerated chemiluminescence of CdS nano-composite. Electrochem Commun 10:1530–1532

    Article  CAS  Google Scholar 

  35. Ding SN, Xu JJ, Chen HY (2006) Enhanced solid-state electrochemiluminescence of CdS nanocrystals composited with carbon nanotubes in H2O2 solution. Chem Commun 34:3631–3633

    Article  Google Scholar 

  36. Ren T, Xu JZ, Tu YF, Xu S, Zhu JJ (2005) Electrogenerated chemiluminescence of CdS spherical assemblies. Electrochem Commun 7:5–9

    Article  CAS  Google Scholar 

  37. Miao JJ, Ren T, Lin D, Zhu JJ, Chen HY (2005) Double-template synthesis of CdS nanotubes with strong electrogenerated chemiluminescence. Small 1:802–805

    Article  CAS  Google Scholar 

  38. Jie GF, Liu B, Miao JJ, Zhu JJ (2007) Electrogenerated chemiluminescence from CdS nanotubes and its sensing application in aqueous solution. Talanta 71:1476–1480

    Article  CAS  Google Scholar 

  39. Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, Stölzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338

    Article  CAS  Google Scholar 

  40. Green M, Howman E (2005) Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun 1:121–123

    Article  Google Scholar 

  41. Chen N, He Y, Su YY, Li XM, Huang Q, Wang HF, Zhang XZ, Tai RZ, Fan CH (2012) The cytotoxicity of cadmium-based quantum dots. Biomater 33:1238–1244

    Article  CAS  Google Scholar 

  42. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjugate Chem 15:79–86

    Article  CAS  Google Scholar 

  43. Li ZF, Ruckensteln E (2004) Water-soluble poly (acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett 4:1463–1467

    Article  CAS  Google Scholar 

  44. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang HF, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  Google Scholar 

  45. Shen JH, Zhu YH, Yang XL, Li CZ (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699

    Article  CAS  Google Scholar 

  46. Fan FR, Park SJ, Zhu YW, Ruoff RS, Bard AJ (2009) Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles. J Am Chem Soc 131:937–939

    Article  CAS  Google Scholar 

  47. Xu SJ, Liu Y, Wang TH, Li JH (2011) Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal Chem 83:3817–3823

    Article  CAS  Google Scholar 

  48. Zhang MH, Yuan R, Chai YQ, Chen SH, Zhong X, Zhong HA, Wang C (2012) A cathodic electrogenerated chemiluminescence biosensor based on luminol and hemin-graphene nanosheets for cholesterol detection. RSC Adv 2:4639–4641

    Article  CAS  Google Scholar 

  49. Li LL, Liu KP, Yang GH, Wang CH, Zhang JR, Zhu JJ (2011) Fabrication of graphene–quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing. Adv Funct Mater 21:869–878

    Article  CAS  Google Scholar 

  50. Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ (2012) A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater 22:2971–2979

    Article  CAS  Google Scholar 

  51. Hu XF, Wang RY, Ding Y, Zhang XL, Jin WR (2010) Electrochemiluminescence of CdTe quantum dots as labels at nanoporous gold leaf electrodes for ultrasensitive DNA analysis. Talanta 80:1737–1743

    Article  CAS  Google Scholar 

  52. Deng SY, Cheng LX, Lei JP, Cheng Y, Huang Y, Ju HX (2013) Label-free electrochemiluminescent detection of DNA by hybridization with a molecular beacon to form hemin/G-quadruplex architecture for signal inhibition. Nanoscale 5:5435–5441

    Article  CAS  Google Scholar 

  53. Zhou H, Liu J, Xu JJ, Chen HY (2011) Ultrasensitive DNA detection based on Au nanoparticles and isothermal circular double-assisted electrochemiluminescence signal amplification. Chem Commun 47:8358–8360

    Article  CAS  Google Scholar 

  54. Divsara F, Ju HX (2011) Electrochemiluminescence detection of near single DNA molecules by using quantum dots–dendrimer nanocomposites for signal amplification. Chem Commun 47:9879–9881

    Article  Google Scholar 

  55. Huang HP, Li JJ, Tan YL, Zhou JJ, Zhu JJ (2010) Quantum dot-based DNA hybridization by electrochemiluminescence and anodic stripping voltammetry. Analyst 135:1773–1778

    Article  CAS  Google Scholar 

  56. Liu F, Liu H, Zhang M, Yu JH, Wang SW, Lu JJ (2013) Ultrasensitive electrochemiluminescence detection of lengthy DNA molecules based on dual signal amplification. Analyst 138:3463–3469

    Article  CAS  Google Scholar 

  57. Wei W, Zhou J, Li HN, Yin LH, Pu YP, Liu SQ (2013) Fabrication of CdTe@SiO2 nanoprobes for sensitive electrogenerated chemiluminescence detection of DNA damage. Analyst 138:3253–3258

    Article  CAS  Google Scholar 

  58. Zhou H, Zhang YY, Liu J, Xu JJ, Chen HY (2013) Efficient quenching of electrochemiluminescence from K-doped graphene–CdS: Eu NCs by G-quadruplex–hemin and target recycling-assisted amplification for ultrasensitive DNA biosensing. Chem Commun 49:2246–2248

    Article  CAS  Google Scholar 

  59. Shan Y, Xu JJ, Chen HY (2009) Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS: Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA. Chem Commun 45:905–907

    Article  Google Scholar 

  60. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  61. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  62. Huang HP, Tan YL, Shi JJ, Liang GX, Zhu JJ (2010) DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence. Nanoscale 2:606–612

    Article  CAS  Google Scholar 

  63. Jie GF, Yuan JX, Zhang J (2012) Quantum dots-based multifunctional dendritic superstructure for amplified electrochemiluminescence detection of ATP. Biosens Bioelectron 31:69–76

    Article  CAS  Google Scholar 

  64. Tian CY, Xu JJ, Chen HY (2012) A novel aptasensor for the detection of adenosine in cancer cells by electrochemiluminescence of nitrogen doped TiO2 nanotubes. Chem Commun 48:8234–8236

    Article  CAS  Google Scholar 

  65. Jie GF, Wang L, Yuan JX, Zhang SS (2011) Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe–ZnS–quantum dot nanoclusters. Anal Chem 83:3873–3880

    Article  CAS  Google Scholar 

  66. Jie GF, Yuan JX, Huang TY, Zhao YB (2012) Electrochemiluminescence of dendritic magnetic quantum dots nanostructure and its quenching by gold nanoparticles for cancer cells assay. Electroanal 24:1220–1225

    Article  CAS  Google Scholar 

  67. Huang HP, Jie GF, Cui RJ, Zhu JJ (2009) DNA aptamer-based detection of lysozyme by an electrochemiluminescence assay coupled to quantum dots. Electrochem Commun 11:816–818

    Article  CAS  Google Scholar 

  68. Chen Y, Jiang BY, Xiang Y, Chai YQ, Yuan R (2011) Aptamer-based highly sensitive electrochemiluminescent detection of thrombin via nanoparticle layer-by-layer assembled amplification labels. Chem Commun 47:7758–7760

    Article  CAS  Google Scholar 

  69. Xie LL, You LQ, Cao XY (2013) Signal amplification aptamer biosensor for thrombin based on a glassy carbon electrode modified with graphene, quantum dots and gold nanoparticles. Spectrochim Acta Part A: Mol Biomol Spec 109:110–115

    Article  CAS  Google Scholar 

  70. Li YF, Liu LL, Fang XL, Bao JC, Han M, Dai ZH (2012) Electrochemiluminescence biosensor based on CdSe quantum dots for the detection of thrombin. Electrochim Acta 65:1–6

    Article  CAS  Google Scholar 

  71. Shan Y, Xu JJ, Chen HY (2011) Enhanced electrochemiluminescence quenching of CdS: Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin. Nanoscale 3:2916–2923

    Article  CAS  Google Scholar 

  72. Huang HP, Zhu JJ (2009) DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Biosens Bioelectron 25:927–930

    Article  CAS  Google Scholar 

  73. Guo YS, Jia XP, Zhang SS (2011) DNA cycle amplification device on magnetic microbeads for determination of thrombin based on graphene oxide enhancing signal-on electrochemiluminescence. Chem Commun 47:725–727

    Article  CAS  Google Scholar 

  74. Hai H, Yang F, Li JP (2013) Electrochemiluminescence sensor using quantum dots based on a G-quadruplex aptamer for the detection of Pb2+. RSC Adv 3:13144–13148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Jie Zhu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Zhu, JJ., Huang, HP. (2013). Quantum Dot-Electrochemiluminescence-Based Biosensing. In: Quantum Dots for DNA Biosensing. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44910-9_4

Download citation

Publish with us

Policies and ethics