Skip to main content

Introduction

  • Chapter
  • First Online:
Quantum Dots for DNA Biosensing

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

DNA biosensors have been widely studied because of their importance in clinical diagnosis, homeland defense as well as environment monitoring. Specifically, with the development of nanotechnology, such as the emergence of quantum dots (QDs), numerous QD-based DNA biosensors have been fabricated successfully. In this chapter, the overview of DNA biosensing and QDs is given. Meanwhile, the superior properties of QDs for the preparation of DNA biosensor are also listed, such as optical, electrochemiluminescence (ECL), electrochemical, and photoelectrochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ngo HT, Wang H-N, Fales AM, Vo-Dinh T (2013) Label-free DNA biosensor based on SERS molecular sentinel on nanowave chip. Anal Chem 85(13):6378–6383

    Article  CAS  Google Scholar 

  2. Sun H, Choy TS, Zhu DR, Yam WC, Fung YS (2009) Nano-silver-modified PQC/DNA biosensor for detection E. coli in environmental water. Biosens Bioelectron 24(5):1405–1410

    Article  CAS  Google Scholar 

  3. Anjum V, Pundir CS (2007) Biosensors: future analytical tools. Sens Transducers 76:937–944

    Google Scholar 

  4. Kruglyak L (1999) Prospects for whole-genome linkage disequilibrium mapping of common disease. Nat Genet 22:139–144

    Article  CAS  Google Scholar 

  5. Knudson AG (2002) Cancer genetics. Am J Med Genet 111:96–102

    Article  Google Scholar 

  6. Suman AK (2008) Recent advances in DNA biosensor. Sens Transducers J 92(5):122–133

    CAS  Google Scholar 

  7. Wang J (2000) From DNA biosensors to gene chips. Nucleic Acids Res 28(16):3011–3016

    Article  CAS  Google Scholar 

  8. Francesca C (2011) DNA based biosensors for environmental and medical applications. University of Cagliari, Cagliari Doctoral Thesis

    Google Scholar 

  9. Babkina SS, Ulakhovich NA (2005) Complexing of heavy metals with DNA and new bioaffinity method of their determination based on amperometric DNA based biosensor. Anal Chem 77(17):5678–5685

    Article  CAS  Google Scholar 

  10. Ho KC, Cheu CY, Hsu HC, Cheu LC, Shiesh SC, Lin XZ (2004) Amperometric detection of morphine at a prussian blue modified indium tin oxide electrode. Biosens Bioelectron 20:3–8

    Article  CAS  Google Scholar 

  11. Ding J, Chen Y, Wang X, Qin W (2012) Label-free and substrate-free potentiometric aptasensing using polycation-sensitive membrane electrodes. Anal Chem 84(4):2055–2061

    Article  CAS  Google Scholar 

  12. Du M, Yang T, Jiao K (2010) Rapid DNA electrochemical biosensing platform for label-free potentiometric detection of DNA hybridization. Talanta 81(3):1022–1027

    Article  CAS  Google Scholar 

  13. Fei Y, Jin XY, Wu ZS, Zhang SB, Shen G, Yu RQ (2011) Sensitive and selective DNA detection based on the combination of hairpin-type probe with endonuclease/GNP signal amplification using quartz-crystal-microbalance transduction. Anal Chim Acta 691(1–2):95–102

    Article  CAS  Google Scholar 

  14. Bunde RL, Jarvi EJ, Rosentreter JJ (1998) Piezoelectric quartz crystal biosensors. Talanta 46(6):1223–1236

    Article  CAS  Google Scholar 

  15. Tan Z-Q, Zhang N-H (2013) An analytical model for thermal effect of microcantilever-DNA biosensors. Int J Thermophys 34(6):1049–1065

    Article  CAS  Google Scholar 

  16. Mao YD, Luo CX, Ouyang Q (2003) Studies of temperature-dependent electronic transduction on DNA hairpin loop sensor. Nucleic Acids Res 31(18):e108–e122

    Article  Google Scholar 

  17. Zhang H, Jia Z, Lv X, Zhou J, Chen L, Liu R, Ma J (2013) Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection. Biosens Bioelectron 44:89–94

    Article  CAS  Google Scholar 

  18. Valentini P, Fiammengo R, Sabella S, Gariboldi M, Maiorano G, Cingolani R, Pompa PP (2013) Gold-nanoparticle-based colorimetric discrimination of cancer-related point mutations with picomolar sensitivity. ACS Nano 7(6):5530–5538

    Article  CAS  Google Scholar 

  19. Ekimov AI, Onushchenko AA (1981) Quantum size effect in three-dimensional micro-scopic semiconductor crystals. JETP Lett 34:345–349

    Google Scholar 

  20. Wang Y, Herron N (1991) Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J Phys Chem 95:525–532

    Article  CAS  Google Scholar 

  21. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  22. Jakobs S, Subramaniam V, Schonle A, Jovin TM, Hell SW (2000) EGFP and DsRed expression cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy. FEBS Lett 479:131–135

    Article  CAS  Google Scholar 

  23. Pepperkok R, Squire A, Geley S, Bastiaens PIH (1999) Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr Biol 9:269–272

    Article  CAS  Google Scholar 

  24. Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  CAS  Google Scholar 

  25. Gao XH, Nie SM (2003) Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol 21:371–373

    Article  CAS  Google Scholar 

  26. Sidransky D (1997) Nucleic acid-based methods for the detection of cancer. Science 278:1054–1058

    Article  CAS  Google Scholar 

  27. Jung R, Peterson K, Kruger W, Wolf M, Wagener C, Zander A (1999) Detection of micrometastasis by cytokeratin 20 RT-PCR is limited due to stable background transcription in granulocytes. Br J Cancer 81:870–873

    Article  CAS  Google Scholar 

  28. Li N, Chang CY, Pan W, Tang B (2012) A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells. Angew Chem Int Ed 51:7426–7430

    Article  CAS  Google Scholar 

  29. Gao XH, Yang L, Petros JA, Marshall FF, Simons JW, Nie SM (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72

    Article  CAS  Google Scholar 

  30. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1297

    Article  CAS  Google Scholar 

  31. Myung N, Lu X, Johnston KP, Bard AJ (2004) Electrogenerated chemiluminescence of Ge nanocrystals. Nano Lett 4:183–185

    Article  CAS  Google Scholar 

  32. Bae Y, Myung N, Bard AJ (2004) Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett 4:1153–1161

    Article  CAS  Google Scholar 

  33. Sun LF, Bao L, Hyun BR, Bartnik AC, Zhong YW, Reed JC, Pang DW, Abruña HD, Malliaras GG, Wise FW (2009) Electrogenerated chemiluminescence from PbS quantum dots. Nano Lett 9:789–793

    Article  CAS  Google Scholar 

  34. Myung N, Ding Z, Bard AJ (2002) Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett 2:1315–1319

    Article  CAS  Google Scholar 

  35. Myung N, Bae Y, Bard AJ (2003) Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett 3:1053–1055

    Article  CAS  Google Scholar 

  36. Shen L, Cui X, Qi H, Zhang C (2007) Electrogenerated chemiluminescence of ZnS nanoparticles in alkaline aqueous solution. J Phys Chem C 111:8172–8175

    Article  CAS  Google Scholar 

  37. Huang HP, Zhu J-J (2013) The electrochemical applications of quantum dots. Analyst 138:5855–5865

    Google Scholar 

  38. Liang MM, Liu SL, Wei MY, Guo L-H (2006) Photoelectrochemical oxidation of DNA by ruthenium tris (bipyridine) on a tin oxide nanoparticle electrode. Anal Chem 78:621–623

    Article  CAS  Google Scholar 

  39. Liang MM, Guo L-H (2007) Photoelectrochemical DNA sensor for the rapid detection of DNA damage induced by styrene oxide and the fenton reaction. Environ Sci Technol 41:658–664

    Article  CAS  Google Scholar 

  40. Liang MM, Jia SP, Zhu SC, Guo LH (2008) Photoelectrochemical sensor for the rapid detection of in situ DNA damage induced by enzyme-catalyzed fenton reaction. Environ Sci Technol 42:635–639

    Article  CAS  Google Scholar 

  41. Wang L-R, Qu N, Guo L-H (2008) Electrochemical displacement method for the investigation of the binding interaction of polycyclic organic compounds with DNA. Anal Chem 80:3910–3914

    Article  CAS  Google Scholar 

  42. Willner I, Patolsky F, Wasserman J (2001) Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew Chem Int Ed 40:1861–1864

    Article  CAS  Google Scholar 

  43. Sheeney-Haj-Ichia L, Basnar B, Willner I (2005) Efficient generation of photocurrents by using CdS/carbon nanotube assemblies on electrodes. Angew Chem Int Ed 44:78–83

    Article  CAS  Google Scholar 

  44. Hojeij M, Su B, Tan S, Mériguet G, Girault HH (2008) Nanoporous photocathode and photoanode made by multilayer assembly of quantum dots. ACS Nano 2:984–992

    Article  CAS  Google Scholar 

  45. Li Y-J, Ma M-J, Yin G, Kong Y, Zhu J-J (2013) Phthalocyanine-sensitized graphene-CdS nanocomposites: an enhanced photoelectrochemical immunosensing platform. Chem Eur J 19:4496–4505

    Article  CAS  Google Scholar 

  46. Cooper JA, Wu M, Compton RG (1998) Photoelectrochemical analysis of ascorbic acid. Anal Chem 70:2922–2927

    Article  CAS  Google Scholar 

  47. Okamoto A, Kamei T, Tanaka K, Saito I (2004) Photostimulated hole transport through a DNA duplex immobilized on a gold electrode. J Am Chem Soc 126:14732–14733

    Article  CAS  Google Scholar 

  48. Zhang XR, Xu YP, Yang YQ, Jin X, Ye SJ, Zhang SS, Jiang LL (2012) A new signal-on photoelectrochemical biosensor based on a graphene/quantum-dot nanocomposite amplified by the dual-quenched effect of bipyridinium relay and AuNPs. Chem Eur J 18:16411–16418

    Article  CAS  Google Scholar 

  49. Bas D, Boyaci IH (2009) Quantitative photoelectrochemical detection of biotin conjugated CdSe/ZnS quantum dots on the avidin immobilized ITO electrodes. Electroanalysis 21(16):1829–1834

    Article  CAS  Google Scholar 

  50. Zhao XM, Zhou SW, Jiang L-P, Hou WH, Shen QM, Zhu J-J (2012) Graphene-CdS nanocomposites: facile one-step synthesis and enhanced photoelectrochemical cytosensing. Chem Eur J 18:4974–4981

    Article  CAS  Google Scholar 

  51. Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Jie Zhu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Zhu, JJ., Li, JJ. (2013). Introduction. In: Quantum Dots for DNA Biosensing. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44910-9_1

Download citation

Publish with us

Policies and ethics