The Enhanced Flock of Trackers

Part of the Studies in Computational Intelligence book series (SCI, volume 532)

Abstract

The paper presents contributions to the design of the Flock of Trackers (FoT). The FoT estimates the pose of the tracked object by robustly combining displacement estimates from a subset of local trackers that cover the object and has been. The enhancements of the Flock of Trackers are: (i) new reliability predictors for the local trackers - the Neighbourhood consistency predictor and the Markov predictor, (ii) new rules for combining the predictions and (iii) introduction of a RANSAC-based estimator of object motion. The enhanced FoT was extensively tested on 62 sequences.Most of the sequences are standard and used in the literature. The improved FoT showed performance superior to the reference method. For all 62 sequences, the ground truth is made publicly available.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR (2006)Google Scholar
  2. 2.
    Chum, O., Matas, J., Kittler, J.: Locally optimized ransac. Pattern Recognition (2003)Google Scholar
  3. 3.
    Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: CVPR (2000)Google Scholar
  4. 4.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM (1981)Google Scholar
  5. 5.
    Grabner, H., Matas, J., Van Gool, L., Cattin, P.: Tracking the invisible: Learning where the object might be. In: CVPR (June)Google Scholar
  6. 6.
    Kalal, Z., Matas, J., Mikolajczyk, K.: P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints. In: CVPR (2010)Google Scholar
  7. 7.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-Backward Error: Automatic Detection of Tracking Failures. In: ICPR (2010)Google Scholar
  8. 8.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. PAMI (2012)Google Scholar
  9. 9.
    Klsch, M., Turk, M.: Fast 2d hand tracking with flocks of features and multi-cue integration. In: Workshop at CVPR (2004)Google Scholar
  10. 10.
    Kwon, J., Lee, K.: Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping monte carlo sampling. In: CVPR (2009)Google Scholar
  11. 11.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision (ijcai). In: IJCAI (1981)Google Scholar
  12. 12.
    Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In: SIGGRAPH (1987)Google Scholar
  13. 13.
    Shahed Nejhum, S., Ho, J., Yang, M.H.: Visual tracking with histograms and articulating blocks. In: CVPR (2008)Google Scholar
  14. 14.
    Vojíř, T., Matas, J.: Robustifying the flock of trackers. In: CVWW (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.The Center for Machine Perception, FEE CTU, PraguePraha 2Czech Republic

Personalised recommendations