Modulated Neuronal Activity and Connectivity of Smoking Resist Using Real-Time fMRI Neurofeedback

  • Dong-Youl Kim
  • Jong-Hwan Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8228)


Recent functional magnetic resonance imaging (fMRI) technique with real-time (rt) feedback has widely been adopted to regulate one’s own neuronal activity within regions-of-interest (ROIs). Despite the fact that the functional connectivity (FC) between ROIs has also been modulated via rt-fMRI neurofeedback (NF), however there is no study to explicitly provide the FC patterns in addition to neuronal activity levels during rt-fMRI NF trials. In this study, we adopted both neuronal activities within an ROI and FC patterns between ROIs to investigate a potential utility of the FC information. Fourteen heavy smokers could voluntarily control their brain activity based on the neurofeedback of both neuronal activation within an ROI related to smoking resist and FC patterns between ROIs. Our proposed rt-fMRI method appears to modulate not only the neuronal activity but also the neuronal connectivity levels.


Functional magnetic resonance imaging smoking resist real-time fMRI neurofeedback orbitofrontal cortex anterior cingulate cortex posterior cingulate cortex precuneus functional connectivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A.: Neurophysiological Investigation of the Basis of the fMRI Signal. Nature 412, 150–157 (2001)CrossRefGoogle Scholar
  2. 2.
    LaConte, S.M.: Decoding fMRI brain states in real-time. Neuroimage 56, 753–765 (2011)CrossRefGoogle Scholar
  3. 3.
    Soldati, N., Calhoun, V.D., Bruzzone, L., Jovicich, J.: The Use of a Priori Information in ICA-based Techniques for Real-Time fMRI: an Evaluation of Static/Dynamic and Spatial/Temporal Characteristics. Front. Hum. Neurosci. 7, 64 (2013)Google Scholar
  4. 4.
    de Charms, R.C., Maeda, F., Glover, G.H., Ludlow, D., Pauly, J.M., Soneji, D., Gabrieli, J.D., Mackey, S.C.: Control over Brain Activation and Pain Learned by Using Real-Time Functional MRI. Proc. Natl. Acad. Sci. U. S. A. 102, 18626–18631 (2005)CrossRefGoogle Scholar
  5. 5.
    Subramanian, L., Hindle, J.V., Johnston, S., Roberts, M.V., Husain, M., Goebel, R., Linden, D.: Real-Time Functional Magnetic Resonance Imaging Neurofeedback for Treatment of Parkinson’s Disease. J. Neurosci. 31, 16309–16317 (2011)CrossRefGoogle Scholar
  6. 6.
    Ruiz, S., Lee, S., Soekadar, S.R., Caria, A., Veit, R., Kircher, T., Birbaumer, N., Sitaram, R.: Acquired Self-Control of Insula Cortex Modulates Emotion Recognition and Brain Network Connectivity in Schizophrenia. Hum. Brain. Mapp. 34, 200–212 (2013)CrossRefGoogle Scholar
  7. 7.
    Linden, D.E., Habes, I., Johnston, S.J., Linden, S., Tatineni, R., Subramanian, L., Sorger, B., Healy, D., Goebel, R.: Real-Time Self-Regulation of Emotion Networks in Patients with Depression. PLoS One 7, e38115 (2012)Google Scholar
  8. 8.
    Hanlon, C.A., Hartwell, K.J., Canterberry, M., Li, X., Owens, M., Lematty, T., Prisciandaro, J.J., Borckardt, J., Brady, K.T., George, M.S.: Reduction of Cue-Induced Craving through Realtime Neurofeedback in Nicotine Users: The Role of Region of Interest Selection and Multiple Visits. Psychiatry. Res. 213, 79–81 (2013)CrossRefGoogle Scholar
  9. 9.
    Heatherton, T.F., Kozlowski, L.T., Frecker, R.C., Fagerström, K.O.: The Fagerström Test for Nicotine Dependence: a Revision of the Fagerström Tolerance Questionnaire. Br. J. Addict. 86, 1119–1127 (1991)CrossRefGoogle Scholar
  10. 10.
    Hartwell, K.J., Johnson, K.A., Li, X., Myrick, H., LeMatty, T., George, M.S., Brady, K.T.: Neural Correlates of Craving and Resisting Craving for Tobacco in Nicotine Dependent Smokers. Addict. Biol. 16, 654–666 (2011)CrossRefGoogle Scholar
  11. 11.
    Lee, J.H., Kim, D.Y., Kim, J.: Mesocorticolimbic Hyperactivity of Deprived Smokers and Brain Imaging. Neuroreport 23, 1039–1043 (2012)CrossRefGoogle Scholar
  12. 12.
    Van De Ville, D., Jhooti, P., Haas, T., Kopel, R., Lovblad, K.O., Scheffler, K., Haller, S.: Recovery of the Default Mode Network after Demanding Neurofeedback Training Occurs in Spatio-Temporally Segregated Subnetworks. Neuroimage 63, 1775–1781 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dong-Youl Kim
    • 1
  • Jong-Hwan Lee
    • 1
  1. 1.Department of Brain and Cognitive EngineeringKorea UniversitySeoulKorea

Personalised recommendations