NeuCubeRehab: A Pilot Study for EEG Classification in Rehabilitation Practice Based on Spiking Neural Networks

  • Yixiong Chen
  • Jin Hu
  • Nikola Kasabov
  • Zengguang Hou
  • Long Cheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8228)

Abstract

One of the most important issues among active rehabilitation technique is how to extract the voluntary intention of patient through bio-signals, especially EEG signal. This pilot study investigates the feasibility of utilizing a 3D spiking neural networks-based architecture named NeuCube for EEG data classification in the rehabilitation practice. In this paper, the architecture of the NeuCube is designed and a Functional Electrical Stimulation (FES) rehabilitation scenario is introduced which requires accurate classification of EEG signal to achieve active FES control. Three classes of EEG signals corresponding to three imaginary wrist motions are collected and classified. The NeuCube architecture provides promising classification results, which demonstrates our proposed method is capable of extracting the voluntary intention in the rehabilitation practice.

Keywords

Spiking Neural Network Rehabilitation EEG classification FES NeuCube 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, Y., Hu, J., Zhang, F., Hou, Z.: Simulation Study of an FES-Involved Control Strategy for Lower Limb Rehabilitation Robot. In: Su, C.-Y., Rakheja, S., Liu, H. (eds.) ICIRA 2012, Part II. LNCS, vol. 7507, pp. 85–95. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Koji, I., Takahiro, S., Toshiyuki, K.: Lower-limb Joint Torque and Position Controls by Functional Electrical Stimulation. In: Complex Medical Engineering, pp. 240–249 (2006)Google Scholar
  3. 3.
    Li, J.T., Zheng, R.Y., Zhang, Y.R., Yao, J.C.: iHandRehab: an Interactive Hand Exoskeleton for Active and Passive Rehabilitation. In: 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, pp. 1–6 (2011)Google Scholar
  4. 4.
    Oonishi, Y., Sehoon, O.: A New Control Method for Power-Assisted Wheelchair Based on the Surface Myoelectric Signal. IEEE Transaction on Industral Electronics 57(9), 3191–3196 (2010)CrossRefGoogle Scholar
  5. 5.
    Ang, K.K., Guan, C., Phua, K.S.: Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation. In: 34th Annual International Conference of the IEEE EMBS, San Diego, pp. 4128–4131 (2012)Google Scholar
  6. 6.
    Kasabov, N.: Evolving Spiking Neural Networks and Neurogenetic Systems for Spatio- and Spectro-Temporal Data Modelling and Pattern Recognition. In: 2012 IEEE World Congress on Computational Intelligence, pp. 234–260 (2012)Google Scholar
  7. 7.
    Buonomano, D., Maass, W.: State-dependent computations: Spatio-temporal processing in cortical networks. Nature Reviews, Neuroscience 10, 113–125 (2009)CrossRefGoogle Scholar
  8. 8.
    Kasabov, N.: NeuCube EvoSpike Architecture for Spatio-Temporal Modelling and Pattern Recognition of Brain Signals. In: Mana, N., Schwenker, F., Trentin, E. (eds.) ANNPR 2012. LNCS (LNAI), vol. 7477, pp. 225–243. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Kasabov, N., Dhoble, K., Nuntalid, N., Indiverim, G.: Dynamic Evolving Spiking Neural Networks for On-line Spatio- and Spectro-Temporal Pattern Recognition. Neural Networks 41, 188–201 (2012)CrossRefGoogle Scholar
  10. 10.
    Song, S., Miller, K., Abbott, L., et al.: Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 3, 919–926 (2000)CrossRefGoogle Scholar
  11. 11.
    Lynch, C.L., Popovic, M.R.: Functional electrical stimulation. Control Systems Magazine, 40–50 (2008)Google Scholar
  12. 12.
    Gerstner, W.: Time structure of the activity of neural network models. Phys. Rev. 51, 738–758 (1995)Google Scholar
  13. 13.
    Delbruck, T.: jAER open source project (2007), http://jaer.wiki.sourceforge.net
  14. 14.
    Berry, M.J., Warland, D.K., Meister, M.: The structure and precision of retinal spiketrains. PNAS 94, 5411–5416 (1997)CrossRefGoogle Scholar
  15. 15.
    Nuntalid, N., Dhoble, K., Kasabov, N.: EEG Classification with BSA Spike Encoding Algorithm and Evolving Probabilistic Spiking Neural Network. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part I. LNCS, vol. 7062, pp. 451–460. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yixiong Chen
    • 1
  • Jin Hu
    • 1
  • Nikola Kasabov
    • 2
  • Zengguang Hou
    • 1
  • Long Cheng
    • 1
  1. 1.State Key Laboratory of Management and Control for Complex Systems, Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.Knowledge Engineering and Discovery Research InstituteAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations