Skip to main content

A Median Variant of Generalized Learning Vector Quantization

  • Conference paper
Neural Information Processing (ICONIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8227))

Included in the following conference series:

Abstract

We introduce a median variant of the Generalized Learning Vector Quantization (GLVQ) algorithm. Thus, GLVQ can be used for classification problem learning, for which only dissimilarity information between the objects to be classified is available. For this purpose, the cost function of GLVQ is reformulated as a probabilistic model such that a generalized expectation maximization scheme can be applied as learning procedure. We give a rigorous mathematical proof for the new approach. Exemplary examples demonstrate the performance and the behavior of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Book  MATH  Google Scholar 

  2. Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based classification: Concepts and algorithms. Journal of Machine Learning Research 10, 747–776 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.-I.: Nonnegative Matrix and Tensor Factorizations. Wiley, Chichester (2009)

    Book  Google Scholar 

  4. Crammer, K., Gilad-Bachrach, R., Navot, A., Tishby, A.: Margin analysis of the LVQ algorithm. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing (Proc. NIPS 2002), vol. 15, pp. 462–469. MIT Press, Cambridge (2003)

    Google Scholar 

  5. Gisbrecht, A., Mokbel, B., Schleif, F.-M., Zhu, X., Hammer, B.: Linear time relational prototype based learning. International Journal of Neural Systems 22(5), 1250021 (2012)

    Article  Google Scholar 

  6. Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T.: Supervised median clustering. IfI Technical Report Series IfI-09-06, TU Clausthal, Department of Informatics, Clausthal-Zellerfeld, Germany (2009)

    Google Scholar 

  7. Hammer, B., Micheli, A., Strickert, M., Sperduti, A.: A general framework for unsupervised processing of structured data. Neurocomputing (2004) (page in press)

    Google Scholar 

  8. Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity data sets. Neural Computation 22(9), 2229–2284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hammer, B., Hofmann, D., Schleif, F.-M., Zhu, X.: Learning vector quantization for (dis-)similarities. Neurocomputing (page in press, 2013)

    Google Scholar 

  10. Hammer, B., Strickert, M., Villmann, T.: Relevance LVQ versus SVM. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 592–597. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general similarity measure. Neural Processing Letters 21(1), 21–44 (2005)

    Article  Google Scholar 

  12. Hathaway, R.J., Bezdek, J.C.: NERF c-means: Non-Euclidean relational fuzzy clustering. Pattern Recognition 27(3), 429–437 (1994)

    Article  Google Scholar 

  13. Hathaway, R.J., Davenport, J.W., Bezdek, J.C.: Relational duals of the c-means clustering algorithms. Pattern Recognition 22(3), 205–212 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haykin, S.: Neural Networks - A Comprehensive Foundation. IEEE Press, New York (1994)

    MATH  Google Scholar 

  15. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1995) (Second Extended Edition1997)

    Google Scholar 

  16. Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. World Scientific (2006)

    Google Scholar 

  17. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Proceedings of the 1995 Conference on Advances in Neural Information Processing Systems, vol. 8, pp. 423–429. MIT Press, Cambridge (1996)

    Google Scholar 

  18. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)

    Google Scholar 

  19. Schneider, P., Hammer, B., Biehl, M.: Distance learning in discriminative vector quantization. Neural Computation 21, 2942–2969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Seo, S., Bode, M., Obermayer, K.: Soft nearest prototype classification. IEEE Transaction on Neural Networks 14, 390–398 (2003)

    Google Scholar 

  21. Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15, 1589–1604 (2003)

    Article  MATH  Google Scholar 

  22. Strickert, M., Schleif, F.-M., Seiffert, U., Villmann, T.: Derivatives of Pearson correlation for gradient-based analysis of biomedical data. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial (37), 37–44 (2008)

    Google Scholar 

  23. Villmann, T., Haase, S.: Divergence based vector quantization. Neural Computation 23(5), 1343–1392 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhu, X., Schleif, F.-M., Hammer, B.: Semi-supervised vector quantization for proximity data. In: Verleysen, M. (ed.) Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2013), Louvain-La-Neuve, Belgium, pp. 89–94 (2013), i6doc.com

  25. Zühlke, D., Schleif, F.-M., Geweniger, T., Haase, S., Villmann, T.: Learning vector quantization for heterogeneous structured data. In: Verleysen, M. (ed.) Proc. of European Symposium on Artificial Neural Networks (ESANN 2010), pp. 271–276. d-side publications, Evere (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nebel, D., Hammer, B., Villmann, T. (2013). A Median Variant of Generalized Learning Vector Quantization. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42042-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42042-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42041-2

  • Online ISBN: 978-3-642-42042-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics