Abstract
We introduce a median variant of the Generalized Learning Vector Quantization (GLVQ) algorithm. Thus, GLVQ can be used for classification problem learning, for which only dissimilarity information between the objects to be classified is available. For this purpose, the cost function of GLVQ is reformulated as a probabilistic model such that a generalized expectation maximization scheme can be applied as learning procedure. We give a rigorous mathematical proof for the new approach. Exemplary examples demonstrate the performance and the behavior of the algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)
Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based classification: Concepts and algorithms. Journal of Machine Learning Research 10, 747–776 (2009)
Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.-I.: Nonnegative Matrix and Tensor Factorizations. Wiley, Chichester (2009)
Crammer, K., Gilad-Bachrach, R., Navot, A., Tishby, A.: Margin analysis of the LVQ algorithm. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing (Proc. NIPS 2002), vol. 15, pp. 462–469. MIT Press, Cambridge (2003)
Gisbrecht, A., Mokbel, B., Schleif, F.-M., Zhu, X., Hammer, B.: Linear time relational prototype based learning. International Journal of Neural Systems 22(5), 1250021 (2012)
Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T.: Supervised median clustering. IfI Technical Report Series IfI-09-06, TU Clausthal, Department of Informatics, Clausthal-Zellerfeld, Germany (2009)
Hammer, B., Micheli, A., Strickert, M., Sperduti, A.: A general framework for unsupervised processing of structured data. Neurocomputing (2004) (page in press)
Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity data sets. Neural Computation 22(9), 2229–2284 (2010)
Hammer, B., Hofmann, D., Schleif, F.-M., Zhu, X.: Learning vector quantization for (dis-)similarities. Neurocomputing (page in press, 2013)
Hammer, B., Strickert, M., Villmann, T.: Relevance LVQ versus SVM. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 592–597. Springer, Heidelberg (2004)
Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general similarity measure. Neural Processing Letters 21(1), 21–44 (2005)
Hathaway, R.J., Bezdek, J.C.: NERF c-means: Non-Euclidean relational fuzzy clustering. Pattern Recognition 27(3), 429–437 (1994)
Hathaway, R.J., Davenport, J.W., Bezdek, J.C.: Relational duals of the c-means clustering algorithms. Pattern Recognition 22(3), 205–212 (1989)
Haykin, S.: Neural Networks - A Comprehensive Foundation. IEEE Press, New York (1994)
Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1995) (Second Extended Edition1997)
Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. World Scientific (2006)
Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Proceedings of the 1995 Conference on Advances in Neural Information Processing Systems, vol. 8, pp. 423–429. MIT Press, Cambridge (1996)
Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)
Schneider, P., Hammer, B., Biehl, M.: Distance learning in discriminative vector quantization. Neural Computation 21, 2942–2969 (2009)
Seo, S., Bode, M., Obermayer, K.: Soft nearest prototype classification. IEEE Transaction on Neural Networks 14, 390–398 (2003)
Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15, 1589–1604 (2003)
Strickert, M., Schleif, F.-M., Seiffert, U., Villmann, T.: Derivatives of Pearson correlation for gradient-based analysis of biomedical data. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial (37), 37–44 (2008)
Villmann, T., Haase, S.: Divergence based vector quantization. Neural Computation 23(5), 1343–1392 (2011)
Zhu, X., Schleif, F.-M., Hammer, B.: Semi-supervised vector quantization for proximity data. In: Verleysen, M. (ed.) Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2013), Louvain-La-Neuve, Belgium, pp. 89–94 (2013), i6doc.com
Zühlke, D., Schleif, F.-M., Geweniger, T., Haase, S., Villmann, T.: Learning vector quantization for heterogeneous structured data. In: Verleysen, M. (ed.) Proc. of European Symposium on Artificial Neural Networks (ESANN 2010), pp. 271–276. d-side publications, Evere (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nebel, D., Hammer, B., Villmann, T. (2013). A Median Variant of Generalized Learning Vector Quantization. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42042-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-42042-9_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-42041-2
Online ISBN: 978-3-642-42042-9
eBook Packages: Computer ScienceComputer Science (R0)