Skip to main content

Modularity Embedding

  • Conference paper
Neural Information Processing (ICONIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8227))

Included in the following conference series:

Abstract

A number of nonlinear dimensionality reduction, or graph embedding, techniques have been proposed recently. These embedding techniques aim to provide a low-dimensional depiction of graphs while preserving certain properties of the data. In this manuscript we propose a novel graph embedding method which tries to optimize the “modularity” of graphs during dimensionality reduction. The embedding method has a simple formulation and is naturally relaxed and solved by a convex semi-definite program, with the guaranteed global optimum. We evaluate the performance of the method with a variety of examples and the method reports promising results in inspecting the cluster structures of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jolliffe, I.: Principal Component Analysis. Springer (2002)

    Google Scholar 

  2. Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall (2000)

    Google Scholar 

  3. Chung, F.: Spectral Graph Theory. American Mathematical Society (1997)

    Google Scholar 

  4. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  5. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  6. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, vol. 14, pp. 585–591. MIT Press (2001)

    Google Scholar 

  7. Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences 100(10), 5591–5596 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming. International Journal of Computer Vision 70(1), 77–90 (2006)

    Article  Google Scholar 

  9. Schölkopf, B., Smola, A., Müller, K.R.: Kernel principal component analysis. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997)

    Google Scholar 

  10. Nesterov, Y.E., Nemirovsky, A.S.: Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms. SIAM Publishing (1993)

    Google Scholar 

  11. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goemans, M.X.: Semidefinite programming in combinatorial optimization. Mathematical Programming 79, 143–161 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research 5, 27–72 (2004)

    MATH  Google Scholar 

  14. Xu, L., Neufeld, J., Larson, B., Schuurmans, D.: Maximum margin clustering. In: Advances in Neural Information Processing (2004)

    Google Scholar 

  15. Newman, M.: Networks: An Introduction. Oxford University Press (2010)

    Google Scholar 

  16. Li, W., Schuurmans, D.: Modular community detection in networks. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 1366–1371 (2011)

    Google Scholar 

  17. Li, W.: Revealing network communities with a nonlinear programming method. Information Sciences 229, 18–28 (2013)

    Article  MathSciNet  Google Scholar 

  18. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008)

    Article  Google Scholar 

  19. Le Cun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  20. Nene, S., Nayar, S., Murase, H.: Columbia object image library (COIL-20). Technical report, Columbia University (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, W. (2013). Modularity Embedding. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42042-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42042-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42041-2

  • Online ISBN: 978-3-642-42042-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics