Skip to main content

Phospholipases in Plant Response to Nitrogen and Phosphorus Availability

  • Chapter
  • First Online:

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 20))

Abstract

Nitrogen and phosphorus are vital elements with key roles in cellular structure and metabolism and are essential nutrients required for plant growth and development. Membrane phospholipids function as units of cellular structure and also as perception sites that initiate signaling transduction in cells. Recent studies of metabolism combined with genetic, molecular, and cellular analyses have determined that phospholipase-mediated signaling and metabolism play important roles in nitrogen signaling and internal phosphate recycling. The involvement of phospholipases in nitrogen or phosphate starvation occurs likely through different mechanisms. Nitrogen response is through phospholipase Dε- and phosphatidic acid-mediated signaling, which promotes root growth and nitrogen acquisition to enhance N use efficiency and plant growth. Phospholipase Dζ2 and nonspecific phospholipase Cs are involved in plant response to phosphate deprivation through lipid remodeling to enhance internal Pi use efficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersson M, Larsson K, Tjellstrom H, Liljenberg C, Sandelius AS (2005) Phosphate-limited oat: the plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280:27578–27586

    Article  CAS  PubMed  Google Scholar 

  • Anthony RG, Henriques R, Helfer A, Meszaros T, Rois G, Testerink C, Munnik T, Deak M, Koncz C, Bogre L (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 23:572–581

    Article  CAS  PubMed  Google Scholar 

  • Awai K, Marechal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H, Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:10960–10965

    Article  CAS  PubMed  Google Scholar 

  • Benning C (1998) Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol. Annu Rev Plant Physiol Plant Mol Biol 49:53–75

    Article  CAS  PubMed  Google Scholar 

  • Benning C, Otha H (2005) Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J Biol Chem 280:2397–2400

    Article  CAS  PubMed  Google Scholar 

  • Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Perez-Perez J, Solano R, Leyva A, Paz-Ares J (2010) A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet 6:e1001102

    Article  PubMed Central  PubMed  Google Scholar 

  • Carswell C, Grant BR, Theodorou ME, Harris J, Niere JO, Plaxton WC (1996) The fungicide phosphonate disrupts the phosphate-starvation response in Brassica nigra seedlings. Plant Physiol 110:105–110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carswell MC, Grant BR, Plaxton WC (1997) Disruption of the phosphate-starvation response of oilseed rape suspension cells by the fungicide phosphonate. Planta 203:67–74

    CAS  PubMed  Google Scholar 

  • Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A (2001) Majoralterations of the regulation of root NO3 uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiol 127:262–271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz-Ramirez A, Oropeza-Aburto A, Razo-Hernandez F, Ramirez-Chavez E, Herrera-Estrella L (2006) Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Natl Acad Sci USA 103:6765–6770

    Article  CAS  PubMed  Google Scholar 

  • Desnos T (2008) Root branching responses to phosphate and nitrate. Curr Opin Plant Biol 11:82–87

    Article  CAS  PubMed  Google Scholar 

  • Dubots EM, Audry MY, Yamaryo YO, Bastien OH, Ohta HC, Breton CE, Marechal E, Block MA (2010) Activation of the chloroplast monogalactosyldiacylglycerol synthase MGD1 by phosphatidic acid and phosphatidylglycerol. J Biol Chem 285:6003–6011

    Article  CAS  PubMed  Google Scholar 

  • Dubots E, Botte C, Boudiere L, Yamaryo-Botte Y, Jouhet J, Marechal E, Block MA (2012) Role of phosphatidic acid in plant galactolipid synthesis. Biochimie 94:86–93

    Article  CAS  PubMed  Google Scholar 

  • Eastmond PJ, Quettier AL, Kroon JT, Craddock C, Adams N, Slabas AR (2010) Phosphatidic acid phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in Arabidopsis. Plant Cell 22:2796–2811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Essigmann B, Güler S, Narang RA, Linke D, Benning C (1988) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 95:1950–1955

    Article  Google Scholar 

  • Fang Y, Vilella-Bach M, Barchmann R, Flanigan A, Chen J (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294:1942–1945

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Park IH, Wu AL, Du G, Huang P, Frohman MA, Walker SJ, Brown HA, Chen J (2003) PLD1 regulates mTOR signaling and mediates Cdc42 activation of S6K1. Curr Biol 13:2037–2044

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Valadier MH, Migge A, Becker TW (1998) Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol 117:283–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fritz M, Lokstein H, Hackenberg H, Welti R, Roth M, Zahringer U, Fulda M, Hellmeyer W, Ott C, Wolter FP, Heinz E (2007) Channeling of eukaryotic diacylglycerol into the biosynthesis of plastidial phosphatidylglycerol. J Biol Chem 282:4613–4625

    Article  CAS  PubMed  Google Scholar 

  • Gaude N, Nakamura Y, Scheible WR, Ohta H, Dörmann P (2008) Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J 56:28–39

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X (2012) Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell 24:2200–2212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hartel H, Dormann P, Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97:10649–10654

    Article  CAS  PubMed  Google Scholar 

  • Heckathorn SA, De Lucia EH, Zielinski RE (1997) The contribution of drought-related decreases in foliar nitrogen concentration to decreases in photosynthetic capacity during and after drought in prairie grasses. Physiol Plant 101:173–182

    Article  CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  CAS  PubMed  Google Scholar 

  • Holzl G, Witt S, Gaude N, Melzer M, Schöttler MA, Dörmann P (2009) The role of diglycosyl lipids in photosynthesis and membrane lipid homeostasis in Arabidopsis. Plant Physiol 150:1147–1159

    Article  PubMed Central  PubMed  Google Scholar 

  • Hong Y, Pan X, Welti R, Wang X (2008) Phospholipase Da3 is involved in the hyperosmotic response in Arabidopsis. Plant Cell 20:803–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong Y, Devaiah SP, Bahn SC, Thamasandra BN, Li M, Welti R, Wang X (2009) Phospholipase Dε and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant J 58:376–387

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Zhang W, Wang X (2010) Phospholipase D and phosphatidic acid signaling in plant response to drought and salinity. Plant Cell Environ 33:627–635

    Article  CAS  PubMed  Google Scholar 

  • Huang NC, Chiang CS, Crawford NM, Tsay YF (1996) CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. Plant Cell 8:2183–2191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jouhet J, Maréchal E, Block MA (2007) Glycerolipid transfer for the building of membranes in plant cells. Prog Lipid Res 46:37–55

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan A, Varadarajan D, Jain A, Held M, Carpita N, Raghothama K (2007) Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta 225:907–918

    Article  CAS  PubMed  Google Scholar 

  • Kelly AA, Dörmann P (2004) Green light for galactolipid trafficking. Curr Opin Plant Biol 7:262–269

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Masuda T, Takamiya K, Ohta H (2006) Membrane lipid alteration during phosphate starvation is regulated by phosphate signaling and auxin/cytokinin cross-talk. Plant J 47:238–248

    Article  CAS  PubMed  Google Scholar 

  • Lai F, Thacker J, Li Y, Doerner P (2007) Cell division activity determines the magnitude of phosphate starvation responses in Arabidopsis. Plant J 50:545–556

    Article  CAS  PubMed  Google Scholar 

  • Lehman N, Ledford B, Di Fulvio M, Frondorf K, McPhail LC, Gomez-Cambronero J (2007) Phospholipase D2-derived phosphatidic acid binds to and activates ribosomal p70 S6 kinase independently of mTOR. FASEB J 21:1075–1087

    Article  CAS  PubMed  Google Scholar 

  • Li M, Qin C, Welti R, Wang X (2006a) Double knockouts of phospholipases Dz1 and Dz2 in Arabidopsis affect root elongation during phosphate limited growth but do not affect root hair patterning. Plant Physiol 140:761–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li M, Welti R, Wang X (2006b) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases D zeta1 and D zeta2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142:750–761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Linkohr BI, Williamson LC, Fitter AH, Leyser HM (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760

    Article  CAS  PubMed  Google Scholar 

  • Mahfouz MM, Kim S, Delauney AJ, Verma DP (2006) Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell 18:477–490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martıin AC, Del Pozo JC, Iglesias J, Rubio V, Solano R, De La Pena A, Leyva A, Paz-Ares J (2000) Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J 24:559–567

    Article  Google Scholar 

  • Misson J, Raghothama K, Jain A, Jouhet J, Block M, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud MC (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102:11934–11939

    Article  CAS  PubMed  Google Scholar 

  • Moellering ER, Benning C (2011) Galactoglycerolipid metabolism under stress: a time for remodeling. Trends Plant Sci 16:98–107

    Article  CAS  PubMed  Google Scholar 

  • Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Blasing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible WR (2007) Genomewide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya K, Ohta H (2005) A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 280:7469–7476

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Koizumi R, Shui G, Shimojima M, Wenk MR, Ito T, Ohta H (2009) Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proc Natl Acad Sci USA 106:20978–20983

    Article  CAS  PubMed  Google Scholar 

  • Narise T, Kobayashi K, Baba S, Shimojima M, Masuda S, Fukaki H, Ohta H (2010) Involvement of auxin signaling mediated by IAA14 and ARF7/19 in membrane lipid remodeling during phosphate starvation. Plant Mol Biol 72:533–544

    Article  CAS  PubMed  Google Scholar 

  • Oropeza-Aburto A, Cruz-Ramırez A, Acevedo-Hernandez GJ, Perez-Torres CA, Caballero-Perez J, Herrera-Estrella L (2012) Functional analysis of the Arabidopsis PLDZ2 promoter reveals an evolutionarily conserved low-Pi-responsive transcriptional enhancer element. J Exp Bot 63:2189–2202

    Article  CAS  PubMed  Google Scholar 

  • Poirier Y, Thoma S, Somerville C, Schiefelbein J (1991) Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol 97:1087–1093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poirier Y, Bucher M (2002) Phosphate transport and homeostasis in Arabidopsis. In: Somerville C, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD

    Google Scholar 

  • Pokotylo I, Pejchar P, Potocky M, Kocourkova D, Kova Z, Ruelland E, Kravets V, Martinec J (2013) The plant non-specific phospholipase C gene family. Novel competitors in lipid signaling. Prog Lipid Res 52:62–79

    Article  CAS  PubMed  Google Scholar 

  • Potocky M, Elias M, Profotova B, Novotna Z, Valentova O, Zarsky V (2003) Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217:122–130

    CAS  PubMed  Google Scholar 

  • Qin C, Wang X (2002) The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholineselective PLDζ1 with distinct regulatory domains. Plant Physiol 128:1057–1068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qin W, Pappan K, Wang X (1997) Molecular heterogeneity of phospholipase D (PLD). Cloning of PLDγ and regulation of plant PLDγ, -β, and -α by polyphosphoinositides and calcium. J Biol Chem 272:28267–28273

    Article  CAS  PubMed  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  CAS  PubMed  Google Scholar 

  • Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T (2006) Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ 29:115–125

    Article  CAS  PubMed  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133

    Article  CAS  PubMed  Google Scholar 

  • Russo MA, Quartacci MF, Izzo R, Belligno A, Navari-Izzo F (2007) Long- and short-term phosphate deprivation in bean roots: plasma membrane lipid alterations and transient stimulation of phospholipases. Phytochemistry 68:1564–1571

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Calderon L, Lopez-Bucio J, Chacon-Lopez A, Cruz- Ramirez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol 46:174–184

    Article  CAS  PubMed  Google Scholar 

  • Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low phosphate media reprograms plant root architecture. Nat Genet 39:792–796

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Sasaki Y, Ida S, Morikawa H (2001) Nitrite reductase gene enrichment improves assimilation of NO2 in Arabidopsis. Plant Physiol 126:731–741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    Article  CAS  PubMed  Google Scholar 

  • Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ticconi CA, Delatorre CA, Abel S (2001) Attenuation of phosphate starvation responses by phosphate in Arabidopsis. Plant Physiol 127:963–972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tjellstrom H, Andersson MX, Larsson KE, Sandelius AS (2008) Membrane phospholipids as a phosphate reserve: the dynamic nature of phospholipid-to-digalactosyl diacylglycerol exchange in higher plants. Plant Cell Environ 31:1388–1398

    Article  PubMed  Google Scholar 

  • Vance CP, Uhde-StoneC C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Varadarajan DK, Karthikeyan AS, Matilda PD, Raghothama KG (2002) Phosphite, ananalog of phosphate, suppresses the coordinated expression of genes under phosphate starvation. Plant Physiol 129:1232–1240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walch-Liu P, Ivanov II, Filleur S, Gan Y, Remans T, Forde BG (2006) Nitrogen regulation of root branching. Ann Bot 97:875–881

    Article  CAS  PubMed  Google Scholar 

  • Wang X (2004) Lipid signaling. Curr Opin Plant Biol 7:329–336

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278

    Article  CAS  PubMed  Google Scholar 

  • Williamson LC, Ribrioux SP, Fitter AH, Leyser HM (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wimalasekera R, Pejcharb P, Holka A, Martinecb J, Scherera G (2010) Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. Mol Plant 3:610–625

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall M (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Moellering ER, Muthan B, Fan J, Benning C (2010) Lipid transport mediated by Arabidopsis TGD proteins is unidirectional from the endoplasmic reticulum to the plastid. Plant Cell Physiol 51:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Yamaryo Y, Dubots E, Albrieux C, Baldan B, Block M (2008) Phosphate availability affects the tonoplast localization of PLDZ2, an Arabidopsis thaliana phospholipase D. FEBS Lett 582:685–690

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Xu C, Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99:5732–5737

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci U S A 96:6529–6534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Rong H, Pilbeam D (2007) Signaling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J Exp Bot 58:2329–2338

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work is supported by grants from National Natural Science Foundation of China (30871303, 30971852, 31271514), the Chinese National Key Basic Research Project (2012CB114200), and Specialized Research Fund for the Doctoral Program of Higher Education (20100146110025, 2012146110004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueyun Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hong, Y., Lu, S. (2014). Phospholipases in Plant Response to Nitrogen and Phosphorus Availability. In: Wang, X. (eds) Phospholipases in Plant Signaling. Signaling and Communication in Plants, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42011-5_9

Download citation

Publish with us

Policies and ethics