Skip to main content

Development of Polymer-Based Hydrophobic Monolithic Columns and Their Applications in Proteome Analysis

  • 618 Accesses

Part of the Springer Theses book series (Springer Theses)

Abstract

As described in Chap. 2, the LC separation capability is one of the most important factors to achieve high proteome coverage in shotgun proteome analysis. In order to improve the separation efficiency, long columns packed with smaller particles are commonly applied. Though the operating pressure of the ultra-high performance liquid chromatography instrument is often over 10,000 psi, the packed length of separation column is still limited, especially when capillary columns with smaller inner diameters (<50 μm) are utilized in nanoflow liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis. Further, the column packing is difficult and time-consuming when column with smaller dimension and smaller packing material (< 5 μm) is utilized. Monolithic columns have higher permeability and faster mass transferring rate than columns packed with particle materials due to its porous structure, which makes them good alternatives to packed columns in chromatography separation. Especially in shotgun proteome analysis, where capillary column (usually 10–100 μm i.d.) is adopted to increase the sensitivity as well as extremely complex protein samples such as serum is inevitably confronted, monolithic capillary columns are feasibly explored to improve the LC separation performance.

Keywords

  • Functional Monomer
  • Monolithic Column
  • Unique Peptide
  • Separation Gradient
  • Separation Capability

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-42008-5_3
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-42008-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8
Fig. 3.9
Fig. 3.10
Fig. 3.11
Fig. 3.12
Fig. 3.13
Fig. 3.14
Fig. 3.15
Fig. 3.16

References

  1. MacNair JE, Lewis KC, Jorgenson JW (1997) Ultrahigh-pressure reversed-phase liquid chromatography in packed capillary columns. Anal Chem 69:983–989

    CrossRef  CAS  Google Scholar 

  2. MacNair JE, Patel KD, Jorgenson JW (1999) Ultrahigh-pressure reversed-phase capillary liquid chromatography: isocratic and gradient elution using columns packed with 1.0-μm particles. Anal Chem 71:700–708

    CrossRef  CAS  Google Scholar 

  3. Shen Y, Zhang R, Moore RJ, Kim J, Metz TO, Hixson KK, Zhao R, Livesay EA, Udseth HR, Smith RD (2005) Automated 20 kpsi RPLC-MS and MS/MS with chromatographic peak capacities of 1000–1500 and capabilities in proteomics and metabolomics. Anal Chem 77:3090–3100

    CrossRef  CAS  Google Scholar 

  4. Luo Q, Shen Y, Hixson KK, Zhao R, Yang F, Moore RJ, Mottaz HM, Smith RD (2005) Preparation of 20-microm-i.d. silica-based monolithic columns and their performance for proteomics analyses. Anal Chem 77:5028–5035

    CrossRef  CAS  Google Scholar 

  5. Xie C, Ye M, Jiang X, Jin W, Zou H (2006) Octadecylated silica monolith capillary column with integrated nanoelectrospray ionization emitter for highly efficient proteome analysis. Mol Cell Proteomics 5:454–461

    CrossRef  CAS  Google Scholar 

  6. Luo Q, Page JS, Tang K, Smith RD (2006) MicroSPE-nanoLC-ESI-MS/MS Using 10-μm-i.d. Silica-based monolithic columns for proteomics. Anal Chem 79:540–545

    CrossRef  Google Scholar 

  7. Luo Q, Tang K, Yang F, Elias A, Shen Y, Moore RJ, Zhao R, Hixson KK, Rossie SS, Smith RD (2006) More sensitive and quantitative proteomic measurements using very low flow rate porous silica monolithic LC columns with electrospray ionization-mass spectrometry. J Proteome Res 5:1091–1097

    CrossRef  CAS  Google Scholar 

  8. Miyamoto K, Hara T, Kobayashi H et al (2008) High-efficiency liquid chromatographic separation utilizing long monolithic silica capillary columns. Anal Chem 80:8741–8750

    CrossRef  CAS  Google Scholar 

  9. Zou H, Huang X, Ye M, Luo Q (2002) Monolithic stationary phases for liquid chromatography and capillary electrochromatography. J Chromatogr A 954:5–32

    CrossRef  CAS  Google Scholar 

  10. Wu R, Hu L, Wang F, Ye M, Zou H (2008) Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. J Chromatogr A 1184:369–392

    CrossRef  CAS  Google Scholar 

  11. Svec F (2004) Preparation and HPLC applications of rigid macroporous organic polymer monoliths. J Sep Sci 27:747–766

    CrossRef  CAS  Google Scholar 

  12. Svec F (2004) Organic polymer monoliths as stationary phases for capillary HPLC. J Sep Sci 27:1419–1430

    CrossRef  CAS  Google Scholar 

  13. Dong J, Zhou H, Wu R, Ye M, Zou H (2007) Specific capture of phosphopeptides by Zr4+-modified monolithic capillary column. J Sep Sci 30:2917–2923

    CrossRef  CAS  Google Scholar 

  14. Toll H, Wintringer R, Schweiger-Hufnagel U, Huber CG (2005) Comparing monolithic and microparticular capillary columns for the separation and analysis of peptide mixtures by liquid chromatography-mass spectrometry. J Sep Sci 28:1666–1674

    CrossRef  CAS  Google Scholar 

  15. Marcus K, Schäfer H, Klaus S, Bunse C, Swart R, Meyer HE (2006) A new fast method for nanoLC–MALDI-TOF/TOF–MS analysis using monolithic columns for peptide preconcentration and separation in proteomic studies. J Proteome Res 6:636–643

    CrossRef  Google Scholar 

  16. Mayr BM, Kohlbacher O, Reinert K, Sturm M, Gröpl C, Lange E, Klein C, Huber CG (2005) Absolute myoglobin quantitation in serum by combining two-dimensional liquid chromatography–electrospray ionization mass spectrometry and novel data analysis algorithms. J Proteome Res 5:414–421

    CrossRef  Google Scholar 

  17. Schley C, Altmeyer MO, Swart R, Müller R, Huber CG (2006) Proteome analysis of Myxococcus xanthus by off-line two-dimensional chromatographic separation using monolithic poly-(styrene-divinylbenzene) columns combined with ion-trap tandem mass spectrometry. J Proteome Res 5:2760–2768

    CrossRef  CAS  Google Scholar 

  18. Tholey A, Toll H, Huber CG (2005) Separation and detection of phosphorylated and nonphosphorylated peptides in liquid chromatography–mass spectrometry using monolithic columns and acidic or alkaline mobile phases. Anal Chem 77:4618–4625

    CrossRef  CAS  Google Scholar 

  19. Yue G, Luo Q, Zhang J, Wu S-L, Karger BL (2006) Ultratrace LC/MS proteomic analysis using 10-μm-i.d. Porous layer open tubular poly(styrene–divinylbenzene) capillary columns. Anal Chem 79:938–946

    CrossRef  Google Scholar 

  20. Luo Q, Yue G, Valaskovic GA, Gu Y, Wu S-L, Karger BL (2007) On-line 1D and 2D porous layer open tubular/LC-ESI-MS using 10-μm-i.d. poly(styrene–divinylbenzene) columns for ultrasensitive proteomic analysis. Anal Chem 79:6174–6181

    CrossRef  CAS  Google Scholar 

  21. Wu R, Zou H, Ye M, Lei Z, Ni J (2001) Capillary electrochromatography for separation of peptides driven with electrophoretic mobility on monolithic column. Anal Chem 73:4918–4923

    CrossRef  CAS  Google Scholar 

  22. Peters EC, Petro M, Svec F, Fréchet JMJ (1997) Molded rigid polymer monoliths as separation media for capillary electrochromatography. Anal Chem 69:3646–3649

    CrossRef  CAS  Google Scholar 

  23. Peters EC, Petro M, Svec F, Fréchet JMJ (1998) Molded rigid polymer monoliths as separation media for capillary electrochromatography. 1. Fine control of porous properties and surface chemistry. Anal Chem 70:2288–2295

    CrossRef  CAS  Google Scholar 

  24. Wang F, Dong J, Ye M, Wu R, Zou H (2009) Improvement of proteome coverage using hydrophobic monolithic columns in shotgun proteome analysis. J Chromatogr A 1216:3887–3894

    CrossRef  CAS  Google Scholar 

  25. Gu B, Chen Z, Thulin CD, Lee ML (2006) Efficient polymer monolith for strong cation-exchange capillary liquid chromatography of peptides. Anal Chem 78:3509–3518

    CrossRef  CAS  Google Scholar 

  26. Stanelle RD, Sander LC, Marcus RK (2005) Hydrodynamic flow in capillary-channel fiber columns for liquid chromatography. J Chromatogr A 1100:68–75

    CrossRef  CAS  Google Scholar 

  27. Eeltink S, Geiser L, Svec F, Frechet JM (2007) Optimization of the porous structure and polarity of polymethacrylate-based monolithic capillary columns for the LC-MS separation of enzymatic digests. J Sep Sci 30:2814–2820

    CrossRef  CAS  Google Scholar 

  28. Wang X, Barber WE, Carr PW (2006) A practical approach to maximizing peak capacity by using long columns packed with pellicular stationary phases for proteomic research. J Chromatogr A 1107:139–151

    CrossRef  CAS  Google Scholar 

  29. Wang X, Stoll DR, Schellinger AP, Carr PW (2006) Peak capacity optimization of peptide separations in reversed-phase gradient elution chromatography: fixed column format. Anal Chem 78:3406–3416

    CrossRef  CAS  Google Scholar 

  30. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotech 17:676–682

    CrossRef  CAS  Google Scholar 

  31. Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotech 19:242–247

    CrossRef  CAS  Google Scholar 

  32. Wolters DA, Washburn MP, Yates JR (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690

    CrossRef  CAS  Google Scholar 

  33. Wang F, Dong J, Ye M, Jiang X, Wu R, Zou H (2008) Online multidimensional separation with biphasic monolithic capillary column for shotgun proteome analysis. J Proteome Res 7:306–310

    CrossRef  CAS  Google Scholar 

  34. Motoyama A, Venable JD, Ruse CI, Yates JR (2006) Automated ultra-high-pressure multidimensional protein identification technology (UHP-MudPIT) for improved peptide identification of proteomic samples. Anal Chem 78:5109–5118

    CrossRef  CAS  Google Scholar 

  35. Ivanov AR, Zang L, Karger BL (2003) Low-attomole electrospray ionization MS and MS/MS analysis of protein tryptic digests using 20-microm-i.d. polystyrene-divinylbenzene monolithic capillary columns. Anal Chem 75:5306–5316

    CrossRef  CAS  Google Scholar 

  36. Wang F, Ye M, Dong J, Tian R, Hu L, Han G, Jiang X, Wu R, Zou H (2008) Improvement of performance in label-free quantitative proteome analysis with monolithic electrospray ionization emitter. J Sep Sci 31:2589–2597

    CrossRef  CAS  Google Scholar 

  37. Hughes MA, Silva JC, Geromanos SJ, Townsend CA (2006) Quantitative proteomic analysis of drug-induced changes in mycobacteria. J Proteome Res 5:54–63

    CrossRef  CAS  Google Scholar 

  38. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5:144–156

    CrossRef  CAS  Google Scholar 

  39. Silva JC, Denny R, Dorschel C, Gorenstein MV, Li GZ, Richardson K, Wall D, Geromanos SJ (2006) Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome: a sweet tale. Mol Cell Proteomics 5:589–607

    CrossRef  CAS  Google Scholar 

  40. Vissers JP, Langridge JI, Aerts JM (2007) Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Mol Cell Proteomics 6:755–766

    CrossRef  CAS  Google Scholar 

  41. Wang F, Dong J, Ye M, Wu R, Zou H (2009) Integration of monolithic frit into the particulate capillary (IMFPC) column in shotgun proteome analysis. Anal Chim Acta 652:324–330

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangjun Wang .

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, F. (2014). Development of Polymer-Based Hydrophobic Monolithic Columns and Their Applications in Proteome Analysis. In: Applications of Monolithic Column and Isotope Dimethylation Labeling in Shotgun Proteome Analysis. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42008-5_3

Download citation