Skip to main content

Exact Approach to Inflationary Universe Models

  • Chapter
  • First Online:
  • 5011 Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter we introduce a study of inflationary universe models that are characterized by a single scalar inflation field . The study of these models is based on two dynamical equations: one corresponding to the Klein–Gordon equation for the inflaton field and the other to a generalized Friedmann equation. After describing the kinematics and dynamics of the models under the Hamilton–Jacobi scheme, we determine in some detail scalar density perturbations and relic gravitational waves. We also introduce the study of inflation under the hierarchy of the slow-roll parameters together with the flow equations. We apply this approach to the modified Friedmann equation that we call the Friedmann–Chern–Simons equation, characterized by F ( H ) = H 2 - α H 4 , and the brane-world inflationary models expressed by the modified Friedmann equation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AdS:

anti-de Sitter

H–J:

Hamilton–Jacobi

WMAP:

Wilkinson microwave anisotropy probe

References

  1. P.J.E. Peebles, D.N. Schramm, E.L. Turner, R.G. Kron: The case for the relativistic hot big bang cosmology, Nature 352, 769 (1991)

    Google Scholar 

  2. P.J.E. Peebles: Principles of Physical Cosmology (Princeton Univ. Press, Princeton 1993)

    Google Scholar 

  3. P.J.E. Peebles, D.N. Schramm, E.L. Turner, R.G. Kron: The evolution of the universe, Sci. Am. 271, 29 (1994)

    Google Scholar 

  4. S. Weinberg: Cosmology (Oxford Univ. Press, New York 2008)

    Google Scholar 

  5. A.A. Penzias, R.W. Wilson: A measurement of excess antenna temperature at 4080 Mc/s, Astrophys. J. 142, 419 (1965)

    Google Scholar 

  6. G. Gamow: Expanding universe and the origin of elements, Phys. Rev. 70, 572 (1946)

    Google Scholar 

  7. R.A. Alpher, H. Bethe, G. Gamow: The origin of chemical elements, Phys. Rev. 73, 803 (1948)

    Google Scholar 

  8. R.A. Alpher, H. Herman: Reflections on early work on ‘big bang’ cosmology, Phys. Today 41, 24 (1988)

    Google Scholar 

  9. E. Hubble: A relation between distance and radial velocity among extra-galactic nebulae, Proc. Natl. Acad. Sci. 15, 168 (1929)

    Google Scholar 

  10. E. Hubble, M. Humason: The velocity-distance relation among extra-galactic nebulae, Astrophys. J. 74, 43 (1931)

    Google Scholar 

  11. A. Riess, A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B.P. Schmidt, R.A. Schommer, R.C. Smith, J. Spyromilio, C. Stubbs, N.B. Suntzeff, J. Tonry: Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astronom. J. 116, 1009 (1998)

    Google Scholar 

  12. S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom, I.M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, N.J. Nunes, R. Pain, C.R. Pennypacker, R. Quimby, C. Lidman, R.S. Ellis, M. Irwin, R.G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B.J. Boyle, A.V. Filippenko, T. Matheson, A.S. Fruchter, N. Panagia, H.J.M. Newberg, W.J. Couch, The Supernova Cosmology Project: Measurements of Ω and Λ from 42 High-Redshift Supernovae, Astrophys. J. 517, 565 (1999)

    Google Scholar 

  13. A. Guth: Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D 23, 347 (1981)

    Google Scholar 

  14. A.D. Linde: Particle Physics and Inflationary Cosmology (Gordon and Breach, New York 1990)

    Google Scholar 

  15. WMAP Collaboration: First year Wilkinson microwave anisotropy probe (WMAP) observations: Implications for inflation, Astrophys. J. Suppl. 148, 213 (2003)

    Google Scholar 

  16. J.D. Barrow: Varieties of expanding universe, Class. Quantum Gravity 13, 2965 (1996)

    Google Scholar 

  17. J.D. Barrow, N.J. Nunes: Dynamics of “logamediate” inflation, Phys. Rev. D 76, 043501 (2007)

    Google Scholar 

  18. P.G. Ferreira, M. Joyce: Cosmology with a primordial scaling field, Phys. Rev. D 58, 023503 (1998)

    Google Scholar 

  19. P. Binetruy: Models of dynamical supersymmetry breaking and quintessence, Phys. Rev. D 60, 063502 (1999)

    Google Scholar 

  20. D.H. Lyth, A. Riotto: Particle physics models of inflation and the cosmological density perturbation, Phys. Rep. 314, 1 (1999)

    Google Scholar 

  21. E.W. Kolb, M.S. Turner: The Early Universe (Addison-Wesley, Menlo Park 1990)

    Google Scholar 

  22. L. Kofman, A.D. Linde: Problems with tachyon inflation, J. High Energy Phys. 02, 004 (2002)

    Google Scholar 

  23. G. Felder, L. Kofmann, A.D. Linde: Inflation and preheating in nonoscillatory models, Phys. Rev. D 60, 103505 (1999)

    Google Scholar 

  24. B. Feng, M. Li: Curvaton reheating in non-oscillatory inflationary models, Phys. Lett. B 564, 169 (2003)

    Google Scholar 

  25. M. Dime, L. Randall, S. Thomas: Supersymmetry breaking in the early universe, Phys. Rev. Lett. 75, 398 (1995)

    Google Scholar 

  26. D.H. Lyth, D. Wands: Generating the curvature perturbation without an inflation, Phys. Lett. B 524, 5 (2002)

    Google Scholar 

  27. S. del Campo, R. Herrera, J. Saavedra, C. Campuzano, E. Rojas: Curvaton reheating in a logamediate inflationary model, Phys. Rev. D 80, 123531 (2009)

    Google Scholar 

  28. B.J. Carr, J.E. Lidsey: Primordial black holes and generalized constraints on chaotic inflation, Phys. Rev. D 48, 543 (1993)

    Google Scholar 

  29. J.E. Lidsey: Towards a solution of the Omega-problem in power law and chaotic inflation, Class. Quantum Gravity 8, 923 (1991)

    Google Scholar 

  30. R.M. Hawkins, J.E. Lidsey: Inflation on a single brane: Exact solutions, Phys. Rev. 63, 041301 (2001)

    Google Scholar 

  31. L.P. Grishchuk, Y.V. Sidorav: Boundary conditions and the wave function of the universe. In: Fourth Seminar on Quantum Gravity, ed. by M.A. Markov, V.A. Berezin, V.P. Frolov (World Scientific, Singapore 1988)

    Google Scholar 

  32. A.G. Muslinov: On the scalar field dynamics in a spatially flat Friedman universe, Class. Quantum Gravity 7, 231 (1990)

    Google Scholar 

  33. D.S. Salopek, J.R. Bond, J.M. Bardeen: Designing density fluctuation spectra in inflation, Phys. Rev. D 40, 1753 (1989)

    Google Scholar 

  34. J.E. Lidsey, A.R. Liddle, E.W. Kolb, E.J. Copeland, T. Barreiro, M. Abney: Reconstructing the inflaton potential – An overview, Rev. Mod. Phys. 69, 373 (1997)

    Google Scholar 

  35. S. del Campo: Exact solutions in inflation, AIP Conf. Proc. 1471, 27 (2011)

    Google Scholar 

  36. J.D. Barrow: Graduated inflationary universes, Phys. Lett. B 235, 40 (1990)

    Google Scholar 

  37. J.D. Barrow, P. Saich: The behaviour of intermediate inflationary universes, Phys. Lett. B 249, 406 (1990)

    Google Scholar 

  38. A. Vallinotto, E.J. Copeland, E.W. Kolb, A.R. Liddle, D.A. Steer: Inflationary potentials yielding constant scalar perturbation spectral indices, Phys. Rev. D 69, 103519 (2004)

    Google Scholar 

  39. A.A. Starobinsky: Inflaton field potential producing the exactly flat spectrum of adiabatic perturbations, J. Exp. Theor. Phys. Lett. 82, 169 (2005)

    Google Scholar 

  40. A.A. Starobinsky: Inflaton field potential producing the exactly flat spectrum of adiabatic perturbations, Pisma Zhurnal Eksp. Teor. Fiz. 82, 187 (2005)

    Google Scholar 

  41. J.D. Barrow, A.R. Liddle, C. Pahud: Intermediate inflation in light of the three-year WMAP observations, Phys. Rev. D 74, 127305 (2006)

    Google Scholar 

  42. S. del Campo, R. Herrera: Curvaton field and intermediate inflationary universe model, Phys. Rev. D 76, 103503 (2007)

    Google Scholar 

  43. S. del Campo: Approach to exact inflation in modified Friedmann equation, J. Cosmol. Astropart. Phys. 12, 005 (2012)

    Google Scholar 

  44. S.M. Carroll, V. Duvvuri, M. Trodden, M. Turner: Is cosmic speed – Up due to new gravitational physics?, Phys. Rev. D 70, 043528 (2004)

    Google Scholar 

  45. C. Gao: Generalized modified gravity with second order acceleration equation, Phys. Rev. D 86, 103512 (2012)

    Google Scholar 

  46. R.-G. Cai, L.-M. Cao, Y.-P. Hu: Corrected entropy-area relation and modified friedmann equations, J. High Energy Phys. 08, 090 (2008)

    Google Scholar 

  47. J.E. Lidsey: Thermodynamics of anomaly-driven cosmology, Class. Quantum Gravity 26, 147001 (2009)

    Google Scholar 

  48. A.P. Apostolopoulos, G. Siopsis, N. Tetradis: Cosmology from an AdS Schwarzschild black hole via holography, Phys. Rev. Lett. 102, 151301 (2009)

    Google Scholar 

  49. J.E. Lipsey, G. Siopsis, N. Tetradis: Holographic cosmology from the first law of thermodynamics and the generalized uncertainty principle, Phys. Rev. D 88, 103519 (2013)

    Google Scholar 

  50. F. Gomez, P. Minning, P. Salgado: Standard cosmology in Chern-Simons gravity, Phys. Rev. D 84, 063506 (2011)

    Google Scholar 

  51. T. Shiromizu, K. Maeda, M. Sasaki: The Einstein equation on the 3-brane world, Phys. Rev. D 62, 024012 (2000)

    Google Scholar 

  52. A. Kamenshchik, U. Moschella, V. Pasquier: An Alternative to quintessence, Phys. Lett. B 511, 265 (2001)

    Google Scholar 

  53. N. Bilic, G.B. Tupper, R.D. Viollier: Unification of dark matter and dark energy: The Inhomogeneous Chaplygin gas, Phys. Lett. B 535, 17 (2002)

    Google Scholar 

  54. S. Dodelson, W.H. Kinney, E.W. Kolb: Cosmic microwave background measurements can discriminate among inflationmodels, Phys. Rev. D 56, 3207 (1997)

    Google Scholar 

  55. A. Albrecht, P.J. Steinhardt: Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48, 1220 (1982)

    Google Scholar 

  56. A.D. Linde: A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108, 389 (1982)

    Google Scholar 

  57. A.D. Linde: Chaotic inflation, Phys. Lett. B 129, 177 (1983)

    Google Scholar 

  58. D.H. Lyth: Particle physics models of inflation, Lecture Notes in Physics 738, 81–118 (2008)

    Google Scholar 

  59. A.D. Linde: Hybrid inflation, Phys. Rev. D 49, 748 (1994)

    Google Scholar 

  60. S. Mukohyama: Horava-Lifshitz cosmology: A review, Class. Quantum Gravity 27, 223101 (2010)

    Google Scholar 

  61. A.R. Liddle, P. Parsons, J.D. Barrow: Formalizing the slow roll approximation in inflation, Phys. Rev. D 50, 7222 (1994)

    Google Scholar 

  62. D.S. Salopek, J.R. Bond: Nonlinear evolution of long wavelength metric fluctuations in inflationary models, Phys. Rev. D 42, 3936 (1990)

    Google Scholar 

  63. V.F. Mukhanov: Inflation: homogeneous limit, arXiv.org e-print archives: astro-ph/0511570 (2005)

    Google Scholar 

  64. J.D. Barrow, A.R. Liddle: Perturbation spectra from intermediate inflation, Phys. Rev. D 47, 5219 (1993)

    Google Scholar 

  65. J.D. Barrow: Exact inflationary universes with potential minima, Phys. Rev. D 49, 3055 (1994)

    Google Scholar 

  66. J. Magueijo, L. Smolin: Gravity’s rainbow, Class. Quantum Gravity 21, 1725 (2004)

    Google Scholar 

  67. L. Kai, Y. Shu-Zheng: An inflationary solution of scalar field in Finsler universe, Chin. Phys. Lett. 25, 2382 (2008)

    Google Scholar 

  68. L. Kai, Y. Shu-Zheng: Exact scalar field inflationary solution in rainbow universe, Int. J. Theor. Phys. 47, 2991 (2008)

    Google Scholar 

  69. L. Kai, Y. Shu-Zheng: A model with exact inflationary solution in Finsler universe, Int. J. Theor. Phys. 48, 1882 (2009)

    Google Scholar 

  70. W.-F. Wang: Exact solution in chaotic inflation model with potential minima, Commun. Theor. Phys. (Beijing China) 36, 122 (2001)

    Google Scholar 

  71. V.N. Lukash: Production of phonons in an isotropic universe, Pisma. Zhurnal Eksp. Teor. Fiz. 79, 1601 (1980)

    Google Scholar 

  72. V.F. Mukhanov, G.V. Chibisov: Quantum fluctuation and nonsingular universe, J. Exp. Theor. Phys. Lett. 33, 532 (1981)

    Google Scholar 

  73. S.W. Hawking: The development of irregularities in a single bubble inflationary universe, Phys. Lett. B 115, 295 (1982)

    Google Scholar 

  74. A.A. Starobinsky: Dynamics of phase transition in the new inflationary universe scenario andgeneration of perturbations, Phys. Lett. B 117, 175 (1982)

    Google Scholar 

  75. L.P. Grishchuk: Amplification of gravitational waves in an istropic universe, Sov. Phys. J. Exp. Theor. Phys. 40, 409 (1975)

    Google Scholar 

  76. A.A. Starobinsky: Relict gravitation radiation spectrum and initial state of the universe, J. Exp. Theor. Phys. Lett. 30, 682 (1979)

    Google Scholar 

  77. V. Rubakov, M. Sazhin, A. Veryaskin: Graviton creation in the inflationary universe and the grand unification scale, Phys. Lett. B 115, 189 (1982)

    Google Scholar 

  78. R. Fabbri, M.D. Pollock: The effect of primordially produced gravitons upon the anisotropy of the cosmological microwave background radiation, Phys. Lett. B 125, 445 (1983)

    Google Scholar 

  79. L. Abbott, M. Wise: Constraints on generalized inflationary cosmologies, Nucl. Phys. B 244, 541 (1984)

    Google Scholar 

  80. V.F. Mukhanov, H. Feldman, R.H. Brandenberger: Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rep. 215, 203 (1992)

    Google Scholar 

  81. V.N. Lukash: Formation of Large Scale Structure of the Universe. In: VIII Brazilian School of Cosmology and Gravitation II, ed. by M. Novello (Editions Frontiers, Rio de Janeiro 1995)

    Google Scholar 

  82. M. Kamionkowski, A. Kosowsky, A. Stebbins: A probe of primordial gravity waves and vorticity, Phys. Rev. Lett. 78, 2058 (1997)

    Google Scholar 

  83. L. Knox, Y. Song: A Limit on the detectability of the energy scale of inflation, Phys. Rev. Lett. 89, 011303 (2002)

    Google Scholar 

  84. Planck Collboration, Planck 2013 results. XXII. Constraints on inflation (2013), arXiv:1303.5082

    Google Scholar 

  85. M. Kamionkowski, A. Kosowsky: The Cosmic microwave background and particle physics, Annu. Rev. Nucl. Part. Sci. 49, 77 (1999)

    Google Scholar 

  86. J.D. Barrow, P. Parsons: Inflationary models with logarithmic potentials, Phys. Rev. D 52, 5576 (1995)

    Google Scholar 

  87. V.F. Mukanov: Gravitational instability of the universe filled with a scalar field, J. Exp. Theor. Phys. Lett. 41, 493 (1985)

    Google Scholar 

  88. V.F. Mukanov: Gravitational instability of the universe filled with a scalar field, Pisma Zhurnal Eksp. Teor. Fiz. 41, 402 (1985)

    Google Scholar 

  89. V.F. Mukanov: Fisical Foundations of Cosmology (Cambridge Univ. Press, Cambridge 2005)

    Google Scholar 

  90. M. Sasaki: Large scale quantum fluctuations in the inflationary universe, Prog. Theor. Phys. 76, 1036 (1986)

    Google Scholar 

  91. J.M. Bardeen, P.J. Steinhardt, M.S. Turner: Spontaneous creation of almost scale – Free density perturbations in an inflationary universe, Phys. Rev. D 28, 679 (1983)

    Google Scholar 

  92. E.D. Stewart, D.H. Lyth: A more accurate analytic calculation of the spectrum of cosmological perturbations produced during inflation, Phys. Lett. B 302, 171 (1993)

    Google Scholar 

  93. D.H. Lyth, E.D. Stewart: The Curvature perturbation in power law (e.g. extended) inflation, Phys. Lett. B 274, 168 (1992)

    Google Scholar 

  94. W.H. Kinney: A Hamilton–Jacobi approach to nonslow roll inflation, Phys. Rev. D 56, 2002 (1997)

    Google Scholar 

  95. S. Kundu, J. Cosmol: Inflation with general initial conditions for scalar perturbations, Astropart. Phys. 1202, 005 (2012)

    Google Scholar 

  96. A. Guth, S.-Y. Pi: Fluctuations in the new inflationary universe, Phys. Rev. Lett. 49, 1110 (1982)

    Google Scholar 

  97. S. Mollerach, S. Matarrese, F. Lucchin: Blue perturbation spectra from inflation, Phys. Rev. D 50, 4835 (1994)

    Google Scholar 

  98. J.-F. Dufaux, J.E. Lidsey, R. Maartens, M. Sami: Cosmological perturbations from brane inflation with a Gauss–Bonnet term, Phys. Rev. D 70, 083525 (2004)

    Google Scholar 

  99. A.A. Starobinsky: Cosmic background anisotropy induced by isotropic flat-spectrum gravitational-wave perturbations, Sov. Astron. Lett. 11, 133 (1985)

    Google Scholar 

  100. L. Hui, W.H. Kinney: Short distance physics and the consistency relation for scalar and tensor fluctuations in the inflationary universe, Phys. Rev. D 65, 103507 (2002)

    Google Scholar 

  101. R. Easther, B.R. Greene, W.H. Kinney, G. Shiu: A Generic estimate of transPlanckian modifications to the primordial power spectrum in inflation, Phys. Rev. D 66, 023518 (2002)

    Google Scholar 

  102. M.B. Hoffman, M.S. Turner: Kinematic constraints to the key inflationary observables, Phys. Rev. D 64, 023506 (2001)

    Google Scholar 

  103. W.H. Kinney: Inflation: Flow, fixed points and observables to arbitrary order in slow roll, Phys. Rev. D 66, 083508 (2002)

    Google Scholar 

  104. R. Easther, W.H. Kinney: Monte Carlo reconstruction of the inflationary potential, Phys. Rev. D 67, 043511 (2003)

    Google Scholar 

  105. S. Chongchitnan, G. Efstathiou: Dynamics of the inflationary flow equations, Phys. Rev. D 72, 083520 (2005)

    Google Scholar 

  106. A.R. Liddle: Inflationary flow equations, Phys. Rev. D 68, 103504 (2003)

    Google Scholar 

  107. M. Spaliński: New solutions of the inflationary flow equations, J. Cosmol. Astropart. Phys. 0708, 016 (2007)

    Google Scholar 

  108. P. Adshead, R. Easther: Constraining inflation, J. Cosmol. Astropart. Phys. 0810, 047 (2008)

    Google Scholar 

  109. R. Easther: An Inflationary model with an exact perturbation spectrum, Class. Quantum Gravity 13, 1775 (1996)

    Google Scholar 

  110. E. Gunzig, R. Maartens, A.V. Nesteruk: Inflationary cosmology and thermodynamics, Class. Quantum Gravity 15, 923 (1998)

    Google Scholar 

  111. Z.-K. Guo, H.-S. Zhang, Y.-Z. Zhang: Inflationary attractor in the braneworld scenario, Phys. Rev. D 69, 063502 (2004)

    Google Scholar 

  112. WMAP Collaboration: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological interpretation, Astrophys. J. Suppl. 192, 18 (2011)

    Google Scholar 

  113. M. Hicken, P. Challis, S. Jha, R.P. Kirshner, T. Matheson, M. Modjaz, A. Rest, W.M. Wood-Vasey, G. Bakos, E.J. Barton, P. Berlind, A. Bragg, C. Briceno, W.R. Brown, N. Caldwell, M. Calkins, R. Cho, L. Ciupik, M. Contreras, K.-C. Dendy, A. Dosaj, N. Durham, K. Eriksen, G. Esquerdo, M. Everett, E. Falco, J. Fernandez, A. Gaba, P. Garnavich, G. Graves, P. Green, T. Groner, C. Hergenrother, M.J. Holman, V. Hradecky, J. Huchra, B. Hutchison, D. Jerius, A. Jordan, R. Kilgard, M. Krauss, K. Luhman, L. Macri, D. Marrone, J. McDowell, D. McIntosh, B. McNamara, T. Megeath, B. Mochejska, D. Munoz, J. Muzerolle, O. Naranjo, G. Narayan, M. Pahre, W. Peters, D. Peterson, K. Rines, B. Ripman, A. Roussanova, R. Schild, A. Sicilia-Aguilar, J. Sokoloski, K. Smalley, A. Smith, T. Spahr, K.Z. Stanek, P. Barmby, S. Blondin, C.W. Stubbs, A. Szentgyorgyi, M.A.P. Torres, A. Vaz, A. Vikhlinin, Z. Wang, M. Westover, D. Woods, P. Zhao: CfA3: 185 type Ia supernova light curves from the CfA, Astrophys. J. 700, 331 (2009)

    Google Scholar 

  114. WMAP Collaboration: Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky maps, systematic errors, and basic results, Astrophys. J. Suppl. 192, 14 (2011)

    Google Scholar 

  115. X. Chen, M.X. Huang, S. Kachru, G. Shiu: Observational signatures and non-Gaussianities of general single field inflation, J. Cosmol. Astropart. Phys. 0701, 002 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio del Campo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

del Campo, S. (2014). Exact Approach to Inflationary Universe Models. In: Ashtekar, A., Petkov, V. (eds) Springer Handbook of Spacetime. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41992-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41992-8_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41991-1

  • Online ISBN: 978-3-642-41992-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics