Skip to main content

Gravitational Astronomy

  • Chapter
  • First Online:
Springer Handbook of Spacetime

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter is about opening the gravitational window to observe the Universe. Although the weakest of all known forces, gravity plays a dominant role in forming stars and galaxies, shaping the large-scale structure, and driving the expansion of the Universe. Gravity has so far played a passive role in our understanding. We only witness its influence indirectly by observing its effect on star light (Doppler effect, cosmological redshift, gravitational lensing, etc.). However, we are at a momentous period that could soon transform our picture of the Universe by opening the gravitational window for observational astronomy. Gravitational waves have already been critical for understanding how neutron star binaries evolve [1] [2]. However, we have not directly observed the waves themselves. This will change before the end of this decade when several different methods of observing gravitational waves will reach sensitivity levels at which we should finally begin to unravel some of the deepest questions in astronomy, cosmology, and fundamental physics. The chapter by van den Broeck will deal with the two latter topics. In this chapter, we will discuss what gravitational waves are (Sect. 26.2), how they interact with matter (Sect. 26.3), on-going and future projects aimed at detecting cosmic gravitational waves (Sect. 26.4), expected and speculative astronomical sources, and a list of open problems on which gravitational astronomy could shed some light (Sect. 26.5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBH:

binary black hole

BNS:

binary neutron star

CERN:

European Organization for Nuclear Research

CMB:

cosmic microwave background

COBE:

Cosmic Background Explorer

CW:

continuous wave

DECIGO:

Decihertz Interferometer Gravitational-Wave Observatory

ET:

Einstein telescope

GRB:

gamma-ray burst

HILV:

LIGO-Hanford, LIGO-India, LIGO-Livingston, Virgo

KAGRA:

Kamioka Gravitational Wave Detector

LIGO:

Laser Interferometer Gravitational-Wave Observatory

LISA:

Laser Interferometer Space Antenna

LMXB:

low-mass x-ray binary

NSBH:

a neutron star and a black hole

PN:

post-Newtonian

PTA:

pulsar timing array

QNM:

quasi-normal mode

SMBBH:

supermassive black hole binar

SNR:

signal-to-noise ratio

TT:

transverse traceless

UV:

ultraviolet

WDB:

white dwarf binary

aLIGO:

advanced LIGO

eLISA:

evolved Laser Interferometer Space Antenna

iLIGO:

initial LIGO

References

  1. J.H. Taylor, L.A. Fowler, P.M. McCulloch: Measurements of general relativistic effects in the binary pulsar PSR1913+16, Nature 277, 437–440 (1979)

    Google Scholar 

  2. J.M. Weisberg, J.H. Taylor: The relativistic binary pulsar b1913+16: Thirty years of observations and analysis, Binary Radio Pulsars. ASP Conf. Ser., Vol. 328, ed. by F.A. Rasio, I.H. Stairs (Astronomical Society of the Pacific, Aspen 2005) p. 25

    Google Scholar 

  3. P.S. Laplace: Book X, Chapter VII, translated by N. Bowditch, original edition published in 1805, A Treatise in Celestial Mechanics, Vol. IV (Chelsea, New York 1966)

    Google Scholar 

  4. L. Lorenz: On the identity of the vibrations of light with electrical currents, Philos. Mag. 34, 287–301 (1867)

    Google Scholar 

  5. Wolfram Research, Long Hanborough, UK; http://scienceworld.wolfram.com/physics/LorenzGauge.html

  6. J.B. Hartle: An Introduction to Einstein’s General Relativity (Addison Wesley, San Francisco 2003)

    Google Scholar 

  7. D.J. Griffiths: An Introduction of Electrodynamics, 2nd edn. (Prentice Hall, Englewood Cliffs 1989)

    Google Scholar 

  8. L.D. Landau, E.M. Lifshitz: The Classical Theory of Fields (Pergamon, Oxford 1971)

    Google Scholar 

  9. C.W. Misner, K.S. Thorne, J.A. Wheeler: Gravitation (Freeman, San Francisco 1973)

    Google Scholar 

  10. L. Blanchet: Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Liv. Rev. Relativ. 9, 4 (2006)

    Google Scholar 

  11. Einstein A.: Näherungsweise Integration der Feldgleichungen der Gravitation, Sitzungsber. k. preuss. Akad. Wiss., 688–696 (1916)

    Google Scholar 

  12. R.A. Hulse, J.H. Taylor: Discovery of a pulsar in a binary system, Astrophys. J. 195, L51–L53 (1975)

    Google Scholar 

  13. F.B. Estabrook, H.D. Wahlquist: Response of Doppler spacecraft tracking to gravitational radiation, Gen. Relativ. Gravit. 6, 439–447 (1975)

    Google Scholar 

  14. J.W. Armstrong: Low-frequency gravitational wave searches using spacecraft doppler tracking, Liv. Rev. Relativ. 9, 1 (2006)

    Google Scholar 

  15. B.S. Sathyaprakash, B.F. Schutz: Physics, Astrophysics and cosmology with gravitational waves, Liv. Rev. Rel. 12, 2 (2009)

    Google Scholar 

  16. B.F. Schutz: Networks of gravitational wave detectors and three figures of merit, Class. Quantum Gravity 28, 125023 (2011)

    Google Scholar 

  17. S. Fairhurst: Triangulation of gravitational wave sources with a network of detectors, New J. Phys. 13(6), 069602 (2011)

    Google Scholar 

  18. J. Veitch, I. Mandel, B. Aylott, B. Farr, V. Raymond, C. Rodriguez, M. van der Sluys, V. Kalogera, A. Vecchio: Estimating parameters of coalescing compact binaries with proposed advanced detector networks, Phys. Rev. D 85(10), 104045 (2012)

    Google Scholar 

  19. J. Weber: Detection and generation of gravitational waves, Phys. Rev. 117, 306–313 (1960)

    Google Scholar 

  20. O.D. Aguiar: Past, present and future of the resonant-mass gravitational wave detectors, Res. Astron. Astrophys. 11, 1–42 (2011)

    Google Scholar 

  21. L. Gottardi, A. de Waard, O. Usenko, G. Frossati, M. Podt, J. Flokstra, M. Bassan, V. Fafone, Y. Minenkov, A. Rocchi: Sensitivity of the spherical gravitational wave detector MiniGRAIL operating at 5K, Phys. Rev. D 76(10), 102005 (2007)

    Google Scholar 

  22. O.D. Aguiar, J.J. Barroso, N.C. Carvalho, P.J. Castro, C.E. Cedeño, M. , C.F. da Silva Costa, J.C.N. de Araujo, E.F.D. Evangelista, S.R. Furtado, O.D. Miranda, P.H.R.S. Moraes, E.S. Pereira, P.R. Silveira, C. Stellati, N.F. Oliveira, Jr., X. Gratens, L.A.N. de Paula, S.T. de Souza, R.M. Marinho, Jr., F.G. Oliveira, C. Frajuca, F.S. Bortoli, R. Pires, D.F.A. Bessada, N.S. Magalhães, M.E.S. Alves, A.C. Fauth, R.P. Macedo, A. Saa, D.B. Tavares, C.S.S. Brandão, L.A. Andrade, G.F. Marranghello, C.B.M.H. Chirenti, G. Frossati, A. de Waard, M.E. Tobar, C.A. Costa, W.W. Johnson, J.A. de Freitas Pacheco, G.L. Pimentel: Status report of the Schenberg gravitational wave antenna, J. Phys. Conf. Ser. 363(1), 012003 (2012)

    Google Scholar 

  23. M. Maggiore: Gravitational Waves. Vol. 1: Theory and Experiments (Oxford Univ. Press, Oxford 2007)

    Google Scholar 

  24. M.E. Gertsenshtein, V.I. Pustovoit: On the detection of low frequency gravitational waves, J. Exp. Theor. Phys. (USSR) 43, 605–607 (1962)

    Google Scholar 

  25. S. Rowan, J. Hough: Laser interferometry for the detection of gravitational waves, J. Opt. A 7, S257–S264 (2005)

    Google Scholar 

  26. B.F. Schutz, D. Nicholson, J.R. Shuttleworth, W.J. Watkins: Progress in gravitational wave detections, Proc. 6th Marcel Grossmann Meeting Recent Dev. Theor. Exp. Gen. Relativ., Gravit. Relativistic Field Theor., ed. by H. Sato, T. Nakamura (World Scientific, Singapore 1992) pp. 163–175

    Google Scholar 

  27. A. Abramovici, W.E. Althouse, R.W.P. Drever, Y. Gursel, S. Kawamura, F.J. Raab, D. Shoemaker, L. Sievers, R.E. Spero, K.S. Thorne, R.E. Vogt, R. Weiss, S.E. Whitcomb, M.E. Zucker: LIGO: The Laser interferometer gravitational wave observatory, Science 256, 325–333 (1992)

    Google Scholar 

  28. B. Caron, et al.: The Virgo interferometer, Class. Quantum Gravity 14, 1461–1469 (1997)

    Google Scholar 

  29. TAMA Collaboration: Current status of TAMA, Class. Quantum Gravity 19, 1409–1419 (2002)

    Google Scholar 

  30. B. Willke, et al.: The GEO 600 gravitational wave detector, Class. Quantum Gravity 19, 1377–1387 (2002)

    Google Scholar 

  31. B.P. Abbott, et al.: LIGO: The Laser Interferometer Gravitational-Wave Observatory, Rep. Prog. Phys. 72(7), 076901 (2009)

    Google Scholar 

  32. B.P. Abbott, et al.: Searches for Gravitational Waves from known pulsars with science run 5 LIGO Data, Astrophys. J. 713, 671–685 (2010)

    Google Scholar 

  33. B. Abbott, et al.: Implications for the Origin of GRB 070201 from LIGO Observations, Astrophys. J. 681, 1419–1430 (2008)

    Google Scholar 

  34. B.P. Abbott, et al.: An upper limit on the stochastic gravitational-wave background of cosmological origin, Nature 460, 990–994 (2009)

    Google Scholar 

  35. J. Aasi, et al.: Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010, Phys. Rev. D 87(2), 022002 (2013)

    Google Scholar 

  36. T. Bulik, K. Belczynski, A. Prestwich: IC10 X-1/NGC300 X-1: The very immediate progenitors of BH-BH binaries, Astrophys. J. 730, 140 (2011)

    Google Scholar 

  37. J. Abadie, et al.: Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science runs 2 and 3, Astrophys. J. 760, 12 (2012)

    Google Scholar 

  38. LIGO Scientific Collaboration, Virgo Collaboration: Prospects for localization of gravitational wave transients by the advanced LIGO and advanced virgo observatories (2013), arXiv e-prints

    Google Scholar 

  39. Sathyaprakash B., S. Fairhurst, B. Schutz, J. Veitch, S. Klimenko, D. Reitze, S. Whitcomb: Scientific benefits of moving one of LIGO Hanford detectors to India, Technical Report T1200219-v1 (LIGO Scientific Collaboration, Pasadena 2011)

    Google Scholar 

  40. S. Fairhurst: Source localization with an advanced gravitational wave detector network, Class. Quantum Gravity 28(10), 105021 (2014)

    Google Scholar 

  41. LIGO Scientific Collaboration, California Institute of Technology, Pasadena USA; http://www.ligo.caltech.edu/~jzweizig/distribution/LSC_Data/

  42. S. Fairhurst: Improved source localization with LIGO India, J. Phys. Conf. Ser. 484, 012007 (2011)

    Google Scholar 

  43. M. Punturo, et al.: The Einstein Telescope: A third-generation gravitational wave observatory, Class. Quantum Gravity 27, 194002 (2010)

    Google Scholar 

  44. The ET Science Team: Einstein gravitational-wave telescope: Conceptual design study, Technical Report ET-0106A-10 (European Gravitational Observatory, 2011)

    Google Scholar 

  45. B. Sathyaprakash, et al.: Scientific objectives of Einstein Telescope, Class. Quantum Gravity 29(12), 124013 (2012)

    Google Scholar 

  46. M. Pitkin, S. Reid, J. Hough: Gravitational wave detection by interferometry (ground and space), Liv. Rev. Relativ. 14(5) (2011)

    Google Scholar 

  47. K. Danzmann: LISA – an ESA cornerstone mission for a gravitational wave observatory, Class. Quantum Gravity 14, 1399 (1997)

    Google Scholar 

  48. N. Seto, S. Kawamura, T. Nakamura: Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space, Phys. Rev. Lett. 87, 221103 (2001)

    Google Scholar 

  49. R.S. Foster, D.C. Backer: Constructing a pulsar timing array, Astrophys. J. 361, 300–308 (1990)

    Google Scholar 

  50. G.H. Janssen, B.W. Stappers, M. Kramer, M. Purver, A. Jessner, I. Cognard: European pulsar timing array, 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More. Am. Inst. Phys. Conf. Series, Vol. 983, ed. by C. Bassa, Z. Wang, A. Cumming, V.M. Kaspi (2008) pp. 633–635

    Google Scholar 

  51. R.N. Manchester: The Parkes pulsar timing array project, 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More. Am. Inst. Phys. Conf. Series, Vol. 983, ed. by C. Bassa, Z. Wang, A. Cumming, V.M. Kaspi (2008) pp. 584–592

    Google Scholar 

  52. F. Jenet, L.S. Finn, J. Lazio, A. Lommen, M. McLaughlin, I. Stairs, D. Stinebring, J. Verbiest, A. Archibald, Z. Arzoumanian, D. Backer, J. Cordes, P. Demorest, R. Ferdman, P. Freire, M. Gonzalez, V. Kaspi, V. Kondratiev, D. Lorimer, R. Lynch, D. Nice, S. Ransom, R. Shannon, X. Siemens: The North American nanohertz observatory for gravitational waves (2009), ArXiv e-prints

    Google Scholar 

  53. G. Hobbs, A. Archibald, Z. Arzoumanian, D. Backer, M. Bailes, I. Cognard, M. Burgay, S. Burke-Spolaor, D. Champion, N.D.R. Bhat, M. Burgay, S. Burke-Spolaor, D. Champion, I. Cognard, W. Coles, J. Cordes, P. Demorest, G. Desvignes, R.D. Ferdman, L. Finn, P. Freire, M. Gonzalez, J. Hessels, A. Hotan, G. Janssen, F. Jenet, A. Jessner, C. Jordan, V. Kaspi, M. Kramer, V. Kondratiev, J. Lazio, K. Lazaridis, K.J. Lee, Y. Levin, A. Lommen, D. Lorimer, R. Lynch, A. Lyne, R. Manchester, M. McLaughlin, D. Nice, S. Oslowski, M. Pilia, A. Possenti, M. Purver, S. Ransom, J. Reynolds, S. Sanidas, J. Sarkissian, A. Sesana, R. Shannon, X. Siemens, I. Stairs, B. Stappers, D. Stinebring, G. Theureau, R. van Haasteren, W. van Straten, J.P.W. Verbiest, D.R.B. Yardley, X.P. You: The International Pulsar Timing Array project: using pulsars as a gravitational wave detector, Class. Quantum Gravity 27(8), 084013 (2010)

    Google Scholar 

  54. F.A. Jenet, A. Lommen, S.L. Larson, L. Wen: Constraining the properties of supermassive black hole systems using pulsar timing: Application to 3C 66B, Astrophys. J. 606, 799–803 (2004)

    Google Scholar 

  55. A. Sesana, A. Vecchio, M. Volonteri: Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays, Mon. Not. R. Astron. Soc. 394, 2255–2265 (2009)

    Google Scholar 

  56. A. Sesana, A. Vecchio, C.N. Colacino: The stochastic gravitational-hack wave background from massive black hole binary systems: implications for observations with pulsar timing arrays, Mon. Not. R. Astron. Soc. 390, 192–209 (2008)

    Google Scholar 

  57. F.A. Jenet, G.B. Hobbs, W. van Straten, R.N. Manchester, M. Bailes, J.P.W. Verbiest, R.T. Edwards, A.W. Hotan, J.M. Sarkissian, S.M. Ord: Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: Current limits and future prospects, Astrophys. J. 653, 1571–1576 (2006)

    Google Scholar 

  58. B.G. Keating, A.G. Polnarev, N.J. Miller, D. Baskaran: The polarization of the cosmic microwave background due to primordial gravitational waves, Int. J. Mod. Phys. A 21, 2459–2479 (2006)

    Google Scholar 

  59. The Planck Collaboration: Planck: The Scientific Programme, Technical Report ESA-SCI (2005) 1 (European Space Agency, Paris 2005)

    Google Scholar 

  60. M. Burgay, N. D’Amico, A. Possenti, R.N. Manchester, A.G. Lyne, B.C. Joshi, M.A. McLaughlin, M. Kramer, J.M. Sarkissian, F. Camilo, V. Kalogera, C. Kim, D.R. Lorimer: An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system, Nature 426, 531–533 (2003)

    Google Scholar 

  61. A. Buonanno, T. Damour: Effective one-body approach to general relativistic two- body dynamics, Phys. Rev. D 59, 084006 (1999)

    Google Scholar 

  62. A. Buonanno, T. Damour: Transition from inspiral to plunge in binary black hole coalescences, Phys. Rev. D 62, 064015 (2000)

    Google Scholar 

  63. F. Pretorius: Evolution of binary black hole spacetimes, Phys. Rev. Lett. 95, 121101 (2005)

    Google Scholar 

  64. B.S. Sathyaprakash, S.V. Dhurandhar: Choice of filters for the detection of gravitational waves from coalescing binaries, Phys. Rev. D 44, 3819 (1991)

    Google Scholar 

  65. B.F. Schutz: Data processing, analysis and storage for interferometric antennas. In: The Detection of Gravitational Waves, ed. by D. Blair (Cambridge Univ. Press, Cambridge 1989) pp. 406–452

    Google Scholar 

  66. J. Abadie, et al.: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors, Class. Quantum Gravity 27, 173001 (2010)

    Google Scholar 

  67. T. Bulik, K. Belczynski, A. Prestwich: IC10 X-1/NGC300 X-1: The very immediate progenitors of BH-BH binaries, Astrophys. J. 730, 140 (2011)

    Google Scholar 

  68. K. Belczynski, M. Dominik, T. Bulik, R. O’Shaughnessy, C. Fryer, D.E. Holz: The effect of metallicity on the detection prospects for gravitational waves, astrophys. J. Lett. 715, L138–L141 (2010)

    Google Scholar 

  69. R. Schödel, T. Ott, R. Genzel, R. Hofmann, M. Lehnert, A. Eckart, N. Mouawad, T. Alexander, M.J. Reid, R. Lenzen, M. Hartung, F. Lacombe, D. Rouan, E. Gendron, G. Rousset, A.-M. Lagrange, W. Brandner, N. Ageorges, C. Lidman, A.F.M. Moorwood, J. Spyromilio, N. Hubin, K.M. Menten: A Star in a 15.2 year orbit around the supermassive black hole at the center of the Milky Way, Nature 419, 694–696 (2002)

    Google Scholar 

  70. A.M. Ghez, S. Salim, S.D. Hornstein, A. Tanner, J.R. Lu, M. Morris, E.E. Becklin, G. Duchene: Stellar orbits around the galactic center black hole, Astrophys. J. 620, 744–757 (2005)

    Google Scholar 

  71. P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N.J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R.N. Lang, A. Lobo, T. Littenberg, S.T. McWilliams, G. Nelemans, A. Petiteau, E.K. Porter, B.F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, H. Ward: eLISA: Astrophysics and cosmology in the millihertz regime (2012)

    Google Scholar 

  72. P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N.J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R.N. Lang, A. Lobo, T. Littenberg, S.T. McWilliams, G. Nelemans, A. Petiteau, E.K. Porter, B.F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, H. Ward: Low-frequency gravitational-wave science with eLISA/NGO, Class. Quantum Gravity 29, 124016 (2012)

    Google Scholar 

  73. K.G. Arun, S. Babak, E. Berti, N. Cornish, C. Cutler, J. Gair, S.A. Hughes, B.R. Iyer, R.N. Lang, I. Mandel, E.K. Porter, B.S. Sathyaprakash, S. Sinha, A.M. Sintes, M. Trias, C. Van Den Broeck, M. Volonteri: Massive black hole binary inspirals: Results from the LISA parameter estimation taskforce, Class. Quantum Gravity 26, 094027 (2009)

    Google Scholar 

  74. S.A. Farrell, N.A. Webb, D. Barret, O. Godet, J.M. Rodrigues: An intermediate-mass black hole of over 500 solar masses in the galaxy ESO243-49, Nature 460, 73–75 (2009)

    Google Scholar 

  75. A. Sesana, J. Gair, I. Mandel, A. Vecchio: Observing gravitational waves from the first generation of black holes, Astrophys. J. Lett. 698, L129–L132 (2009)

    Google Scholar 

  76. J.R. Gair, I. Mandel, A. Sesana, A. Vecchio: Probing seed black holes using future gravitational-wave detectors, Class. Quantum Gravity 26, 204009 (2009)

    Google Scholar 

  77. P. Amaro-Seoane, L. Santamaria: Detection of IMBHs with ground-based gravitational wave observatories: A biography of a binary of black holes, from birth to death, Astrophys. J. 722, 1197–1206 (2010)

    Google Scholar 

  78. F.D. Ryan: Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral, Phys. Rev. D 56, 1845 (1997)

    Google Scholar 

  79. J.R. Gair, I. Mandel, A. Sesana, A. Vecchio: Probing seed black holes using future gravitational-wave detectors, Class. Quantum Gravity 26(20), 204009 (2009)

    Google Scholar 

  80. B.F. Schutz: Determining the Hubble constant from gravitational wave observations, Nature 323, 310 (1986)

    Google Scholar 

  81. N. Dalal, D.E. Holz, S.A. Hughes, B. Jain: Short GRB and binary black hole standard sirens as a probe of dark energy, Phys. Rev. D 74, 063006 (2006)

    Google Scholar 

  82. B.S. Sathyaprakash, B.F. Schutz, C. Van Den Broeck: Cosmography with the Einstein telescope, Class. Quantum Gravity 27, 215006 (2010)

    Google Scholar 

  83. S. Nissanke, D.E. Holz, S.A. Hughes, N. Dalal, J.L. Sievers: Exploring short gamma-ray bursts as gravitational-wave standard sirens, Astrophys. J. 725, 496–514 (2010)

    Google Scholar 

  84. H.-Y. Chen, D.E. Holz: GRB beaming and gravitational-wave observations (2012) ArXiv e-prints

    Google Scholar 

  85. E. Nakar: Short-hard gamma-ray bursts, Phys. Rep. 442, 166–236 (2007)

    Google Scholar 

  86. C. Messenger, J. Read: Measuring a cosmological distance-redshift relationship using only gravitational wave observations of binary neutron star coalescences, Phys. Rev. Lett. 108, 091101 (2012)

    Google Scholar 

  87. Y. Pan, A. Buonanno, M. Boyle, L.T. Buchman, L.E. Kidder, H.P. Pfeiffer, M.A. Scheel: Inspiralmerger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism, Phys. Rev. D 84, 124052 (2011)

    Google Scholar 

  88. E. Berti, V. Cardoso, A.O. Starinets: Quasinormal modes of black holes and black branes, Class. Quantum Gravity 26, 163001 (2009)

    Google Scholar 

  89. I. Kamaretsos, M. Hannam, S. Husa, B.S. Sathyaprakash: Black-hole hair loss: Learning about binary progenitors from ringdown signals, Phys. Rev. D 85, 024018 (2012)

    Google Scholar 

  90. I. Kamaretsos, M. Hannam, B. Sathyaprakash: Is black-hole ringdown a memory of its progenitor?, Phys. Rev. Lett. 109, 141102 (2012)

    Google Scholar 

  91. O. Dreyer, B. Kelly, B. Krishnan, L.S. Finn, D. Garrison, R. Lopez-Aleman: Black hole spectroscopy: Testing general relativity through gravitational wave observations, Class. Quantum Gravity 21, 787 (2004)

    Google Scholar 

  92. E. Berti, J. Cardoso, V. Cardoso, M. Cavagliá: Matched filtering and parameter estimation of ringdown waveforms, Phys. Rev. D 76, 104044 (2007)

    Google Scholar 

  93. S. Gossan, J. Veitch, B.S. Sathyaprakash: Bayesian model selection for testing the no-hair theorem with black hole ringdowns, Phys. Rev. D 85, 124056 (2012)

    Google Scholar 

  94. C.D. Ott: Probing the core-collapse supernova mechanism with gravitational waves, Class. Quantum Gravity 26, 204015 (2009)

    Google Scholar 

  95. S. Ando, F. Beacom, H. Yüksel: Detection of Neutrinos from supernovae in nearby galaxies, Phys. Rev. Lett. 95, 171101 (2005)

    Google Scholar 

  96. B.J. Owen: Maximum elastic deformations of compact stars with exotic equations of state, Phys. Rev. Lett. 95, 211101 (2005)

    Google Scholar 

  97. G. Ushomirsky, C. Cutler, L. Bildsten: Deformations of accreting neutron star crusts and gravitational wave emission, Mon. Not. R. Astron. Soc. 319, 902 (2000)

    Google Scholar 

  98. C. Cutler: Gravitational waves from neutron stars with large toroidal B fields, Phys. Rev. D 66(8), 084025 (2002)

    Google Scholar 

  99. D.J.B. Payne, A. Melatos, E.S. Phinney: Gravitational waves from an accreting neutron star with a magnetic mountain, Astrophysics Gravitational Wave Sources. AIP Conf. Proc., Vol. 686, ed. by J.M. Centrella (American Institute of Physics, Melville 2003) pp. 92–95

    Google Scholar 

  100. N. Chamel, P. Haensel: Physics of Neutron Star Crusts, Liv. Rev. Relativ. 11(10) (2008)

    Google Scholar 

  101. C.M. Espinoza, A.G. Lyne, B.W. Stappers, M. Kramer: A study of 315 glitches in the rotation of 102 pulsars, Mon. Not. R. Astron. Soc. 414, 1679–1704 (2011)

    Google Scholar 

  102. Pulsar Glitches, Jodrell Bank Centre for Astrophysics, University of Manchester, UK; http://www.jb.man.ac.uk/pulsar/glitches.html

  103. D. Chakrabarty: Millisecond pulsars in x-ray binaries, Binary Radio Pulsars. Astron. Soc. Pac. Conf. Series, Vol. 328, ed. by F.A. Rasio, I.H. Stairs (2005) p. 279

    Google Scholar 

  104. R.V. Wagoner: Gravitational radiation from accreting Neutron stars, Astrophys. J. 278, 345–348 (1984)

    Google Scholar 

  105. L. Bildsten: Gravitational radiation and rotation of accreting neutron stars, Astrophys. J. Lett. 501, L89 (1998)

    Google Scholar 

  106. N. Andersson, K.D. Kokkotas, N. Stergioulas: On the relevance of the R-mode instability for accreting neutron stars and white dwarfs, Astrophys. J. 516, 307–314 (1999)

    Google Scholar 

  107. C. Cutler: Gravitational waves from neutron stars with large toroidal B fields, Phys. Rev. D 66(8), 084025 (2002)

    Google Scholar 

  108. A.L. Watts, B. Krishnan, L. Bildsten, B.F. Schutz: Detecting gravitational wave emission from the known accreting neutron stars, Mon. Not. R. Astron. Soc. 389, 839–868 (2008)

    Google Scholar 

  109. L.P. Grishchuk: Amplification of gravitational waves in an istropic universe, Sov. Phys. J. Exp. Theor. Phys. 40, 409–415 (1975)

    Google Scholar 

  110. M. Maggiore: Gravitational wave experiments and early universe cosmology, Phys. Rep. 331, 283 (2000)

    Google Scholar 

  111. B. Allen, J.D. Romano: Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities, Phys. Rev. D 59, 102001 (1999)

    Google Scholar 

  112. G. Nelemans, L.R. Yungelson, S.F. Portegies Zwart: The gravitational wave signal from the galactic disk population of binaries containing two compact objects, Astron. Astrophys. 375, 890 (2001)

    Google Scholar 

  113. E.S. Phinney: A practical theorem on gravitational wave backgrounds (2001)

    Google Scholar 

  114. T. Regimbau, V. Mandic: Astrophysical sources of stochastic gravitational-wave background, Class. Quantum Gravity 25, 184018 (2008)

    Google Scholar 

  115. T. Regimbau: The astrophysical gravitational wave stochastic background, Res. Astron. Astrophys. 11, 369–390 (2011)

    Google Scholar 

  116. T. Regimbau, T. Dent, W. Del Pozzo, S. Giampanis, T.G.F. Li, C. Robinson, C. Van Den Broeck, D. Meacher, C. Rodriguez, B.S. Sathyaprakash, K. Wójcik: A mock data challenge for the Einstein gravitational-wave telescope, Phys. Rev. D 86, 122001 (2012)

    Google Scholar 

  117. A. Sesana: Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band, Mon. Not. R. Astron. Soc. Lett. 433(1), L1–L5 (2013)

    Google Scholar 

  118. R. van Haasteren, Y. Levin, G.H. Janssen, K. Lazaridis, M. Kramer, B.W. Stappers, G. Desvignes, M.B. Purver, A.G. Lyne, R.D. Ferdman, A. Jessner, I. Cognard, G. Theureau, N. D’Amico, A. Possenti, M. Burgay, A. Corongiu, J.W.T. Hessels, R. Smits, J.P.W. Verbiest: Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data, Mon. Not. R. Astron. Soc. 414, 3117–3128 (2011)

    Google Scholar 

  119. B. Allen: Stochastic gravity-wave background in inflationary-universe models, Phys. Rev. D 37, 2078–2085 (1988)

    Google Scholar 

  120. L.P. Grishchuk, V.M. Lipunov, K.A. Postnov, M.E. Prokhorov, B.S. Sathyaprakash: Gravitational wave astronomy: In anticipation of first sources to be detected, Phys. Usp. 44, 1 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Suryanarayana Sathyaprakash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sathyaprakash, B.S. (2014). Gravitational Astronomy. In: Ashtekar, A., Petkov, V. (eds) Springer Handbook of Spacetime. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41992-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41992-8_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41991-1

  • Online ISBN: 978-3-642-41992-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics