Skip to main content

Positive Energy Theorems in General Relativity

  • Chapter
  • First Online:

Part of the book series: Springer Handbooks ((SHB))

Abstract

At the end of the nineteenth century light was regarded as an electromagnetic wave propagating in a material medium called ether. The speed c appearing in Maxwell’s wave equations was the speed of light with respect to the ether. Therefore, according to the Galilean addition of velocities, the speed of light in the laboratory would differ from c. The measure of such a difference would reveal the motion of the laboratory (the Earth) relative to the ether (a sort of absolute motion). However, the Earth’s absolute motion was never evidenced.

Galileo addition of velocities is based on the assumption that lengths and time intervals are invariant (independent of the state of motion). In this way of thinking, the spacetime emanates from our daily experience and lies at the heart of Newton’s classical mechanics. Nevertheless, in 1905 Einstein defied Galileo addition of velocities by postulating that light travels at the same speed c in any inertial frame. In doing so, Einstein extended the principle of relativity to the electromagnetic phenomena described by Maxwell’s laws. In Einstein’s special relativity the ether does not exist and the absolute motion is devoid of meaning. The invariance of the speed of light forced the replacement of Galileo transformations with Lorentz transformations. Thus, relativistic length contractions and time dilations entered our understanding of spacetime. Newtonian mechanics had to be reformulated, which led to the discovery of the mass–energy equivalence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Ashtekar, G.T. Horowitz: Energy-momentum of isolated systems cannot be null, Phys. Lett. A 89(4), 181–184 (1982)

    Google Scholar 

  2. V.I. Denisov, V.O. Solov’ev: The energy determined in general relativity on the basis of the traditional Hamiltonian approach does not have physical meaning, Theor. Math. Phys. 56, 832–841 (1983)

    Google Scholar 

  3. H.L. Bray, P.T. Chruściel: The Penrose inequality. In: The Einstein Equations and the Large Scale Behavior of Gravitational Fields, ed. by P.T. Chruściel, H. Friedrich (Birkhäuser, Basel 2004) pp. 39–70

    Google Scholar 

  4. R. Bartnik: The mass of an asymptotically flat manifold, Commun. Pure App. Math. 39(5), 661–693 (1986)

    Google Scholar 

  5. P. Chruściel: Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Topological Properties and Global Structure of Space-Time (Erice, 1985), NATO Advanced Science Institutes Series B: Physics., Vol. 138, ed. by P. Bergmann, V. de Sabbata (Plenum, New York 1986) pp. 49–59

    Google Scholar 

  6. P. T. Chruściel: Lectures on energy in General Relativity (2012), available online at http://homepage.univie.ac.at/piotr.chrusciel

  7. J.M. Lee, T.H. Parker: The Yamabe problem, Bull. Am. Math. Soc. 17(1), 37–91 (1987)

    Google Scholar 

  8. G. B. Cook: Initial data for numerical Relativity, Living Rev. Relativ. 3 (2000) 5, available online at http://www.livingreviews.org/Articles/Volume3/2000-5cook/

  9. M. Cantor, D. Brill: The Laplacian on asymptotically flat manifolds and the specification of scalar curvature, Compositio Math. 43(3), 317–330 (1981)

    Google Scholar 

  10. D. Brill: On the positive definite mass of the Bondi-Weber-Wheeler time-symmetric gravitational waves, Annu. Phys. 7, 466–483 (1959)

    Google Scholar 

  11. S. Dain: Geometric inequalities for axially symmetric black holes, Class. Quantum Gravity 29(7), 073001 (2012)

    Google Scholar 

  12. P. T. Chruściel: Lectures on mathemacital Relativity (2008), available online at http://homepage.univie.ac.at/piotr.chrusciel/papers/BeijingAll_OnlinePDF.pdf

  13. H. L. Bray, J. L. Jauregui: A geometric theory of zero area singularities in general relativity (2009) 0909.0522

    Google Scholar 

  14. S. Dain, M.E. Gabach Clément: Extreme Bowen-York initial data, Class. Quantum Gravity 26, 035020 (2009)

    Google Scholar 

  15. D.R. Brill, R.W. Lindquist: Interaction energy in geometrostatics, Phys. Rev. 131, 471–476 (1963)

    Google Scholar 

  16. M. Alcubierre: Introduction to 3 + 1 Numerical Relativity, International Series of Monographs on Physics, Vol. 140 (Oxford Univ. Press, Oxford 2008)

    Google Scholar 

  17. C.W. Misner: Wormhole initial conditions, Phys. Rev. 118, 1110–1111 (1960)

    Google Scholar 

  18. R.M. Wald: General Relativity (Univ. Chicago Press, Chicago 1984)

    Google Scholar 

  19. R. Osserman: A survey of minimal surfaces, 2nd edn. (Dover, New York 1986)

    Google Scholar 

  20. K. Martel, E. Poisson: Regular coordinate systems for Schwarzschild and other spherical space-times, Am. J. Phys. 69, 476–480 (2001)

    Google Scholar 

  21. I. de Gentile Austria: Superficies maximales con momento lineal en Schwarzschild, Master’s Thesis (Facultad de Matemática Astronomía y Física, Universidad Nacional de Córdoba 2010), available online at http://www.famaf.unc.edu.ar/dain/ivan-tf_OnlinePDF.pdf

  22. D.R. Brill, P.S. Jang: The positive mass conjecture. In: General Relativity and Gravitation, Vol. 1, ed. by A. Held (Plenum, New York 1980) pp. 173–193

    Google Scholar 

  23. R. Schoen, S.T. Yau: On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65(1), 45–76 (1979)

    Google Scholar 

  24. E. Witten: A new proof of the positive energy theorem, Commun. Math. Phys. 80, 381–402 (1981)

    Google Scholar 

  25. G. Huisken, T. Ilmanen: The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differ. Geom. 59, 352–437 (2001)

    Google Scholar 

  26. R. Geroch: Energy extraccion, Ann. New York Acad. Sci. 224, 108–117 (1973)

    Google Scholar 

  27. R. Penrose, W. Rindler: Spinors and Space-Time, Vol. 2 (Cambridge Univ. Press, Cambridge, 1986)

    Google Scholar 

  28. L.B. Szabados: Quasi-local energy-momentum and angular momentum in GR: A review article, Living Rev. Relativ. 7, 4 (2004)

    Google Scholar 

  29. G.T. Horowitz, P. Tod: A relation between local and total energy in general relativity, Commun. Math. Phys. 85, 429–447 (1982)

    Google Scholar 

  30. O. Reula, K.P. Tod: Positivity of the Bondi energy, J. Math. Phys. 25(4), 1004–1008 (1984)

    Google Scholar 

  31. J.A. Nester: A New gravitational energy expression with a simple positivity proof, Phys. Lett. A 83, 241 (1981)

    Google Scholar 

  32. P. Bizon, E. Malec: On Witten’s positive energy proof for weakly asymptotically flat space-times, Class. Quantum Gravity 3, L123 (1986)

    Google Scholar 

  33. R. Penrose, W. Rindler: Spinors and Space-Time, Vol. 1 (Cambridge Univ. Press, Cambridge, 1984)

    Google Scholar 

  34. A. Sen: On the existence of neutrino “zero-modes” in vacuum spacetimes, J. Math. Phys. 22(8), 1781–1786 (1981)

    Google Scholar 

  35. T. Parker, C.H. Taubes: On Witten’s proof of the positive energy theorem, Commun. Math. Phys. 84(2), 223–238 (1982)

    Google Scholar 

  36. O. Reula: Existence theorem for solutions of Witten’s equation and nonnegativity of total mass, J. Math. Phys. 23(5), 810–814 (1982)

    Google Scholar 

  37. S. Dain: Elliptic systems. In: Analytical and Numerical Approaches to Mathematical Relativity, Lecture Notes in Physics, Vol. 692, ed. by J. Frauendiener, D. Giulini, V. Perlick (Springer, Berlin Heidelberg 2006) pp. 117–139

    Google Scholar 

  38. G.W. Gibbons, S.W. Hawking, G.T. Horowitz, M.J. Perry: Positive mass theorems for black holes, Commun. Math. Phys. 88, 295–308 (1983)

    Google Scholar 

  39. G.W. Gibbons, C.M. Hull: A Bogomolny bound for general relativity and solitons in N = 2 supergravity, Phys. Lett. B 109(3), 190–194 (1982)

    Google Scholar 

  40. H.L. Bray: Proof of the riemannian penrose conjecture using the positive mass theorem, J. Differ. Geom. 59, 177–267 (2001)

    Google Scholar 

  41. M. Mars: Present status of the Penrose inequality, Class. Quantum Gravity 26, 193001 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Dain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dain, S. (2014). Positive Energy Theorems in General Relativity. In: Ashtekar, A., Petkov, V. (eds) Springer Handbook of Spacetime. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41992-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41992-8_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41991-1

  • Online ISBN: 978-3-642-41992-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics