Skip to main content

Dynamical and Hamiltonian Formulation of General Relativity

  • Chapter
  • First Online:
Springer Handbook of Spacetime

Part of the book series: Springer Handbooks ((SHB))

Abstract

Einstein’s theory of General Relativity describes spacetime as a solution of a set of non-linear partial differential equations. These equations are initially not in the form of evolution equations and it is hence not clear how to formulate and solve initial-value problems, as would be physically highly desirable. In this contribution it will be shown how to cast Einstein’s equations into the form of a constrained Hamiltonian system. This will allow to formulate and solve initial-value problems, integrate Einstein’s equations by numerical codes, characterize dynamical degrees of freedom, and characterize isolated systems and their conserved quantities, like energy, momentum, and angular momentum. Moreover, this reformulation of General Relativity is also the starting point for various attempts to subject the gravitational field to the program of canonical quantization. The exposition given here is, to some degree, self contained. It attempts to comprehensively account for all the relevant geometric constructions, including the relevant symplectic geometry of constrained Hamiltonian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADM:

Arnowitt, Deser, Misner

GR:

general relativity

References

  1. P.A.M. Dirac: The theory of gravitation in Hamiltonian form, Proc. R. Soc. A 246(1246), 333–343 (1958)

    Google Scholar 

  2. P.A.M. Dirac: Generalized Hamiltonian dynamics, Proc. R. Soc. A 246(1246), 326–332 (1958)

    Google Scholar 

  3. P.A.M. Dirac: Lectures on Quantum Mechanics, Belfer Graduate School of Science Monographs, Vol. 2 (Yeshiva Univ., New York 1964)

    Google Scholar 

  4. M. Gotay, J. Nester, G. Hinds: Presymplectic manifolds and the Dirac–Bergmann theory of constraints, J. Math. Phys. 19(11), 2388–2399 (1978)

    Google Scholar 

  5. M. Henneaux, C. Teitelboim: Quantization of Gauge Systems (Princeton Univ. Press, Princeton 1992)

    Google Scholar 

  6. R. Arnowitt, S. Deser: Quantum theory of gravitation: General formulation and linearized theory, Phys. Rev. 113(2), 745–750 (1959)

    Google Scholar 

  7. R. Arnowitt, S. Deser, C.W. Misner: Dynamical structure and definition of energy in general relativity, Phys. Rev. 116(5), 1322–1330 (1959)

    Google Scholar 

  8. R. Arnowitt, S. Deser, C.W. Misner: Canonical variables for general relativity, Phys. Rev. 117(6), 1595–1602 (1960)

    Google Scholar 

  9. R. Arnowitt, S. Deser, C.W. Misner: Canonical variables, expressions for energy, and the criteria for radiation in general relativity, Nuovo Cim. 15(3), 487–491 (1960)

    Google Scholar 

  10. R. Arnowitt, S. Deser, C.W. Misner: Finite self-energy of classical point particles, Phys. Rev. Lett. 4(7), 375–377 (1960)

    Google Scholar 

  11. R. Arnowitt, S. Deser, C.W. Misner: Energy and the criteria for radiation in general relativity, Phys. Rev. 118(4), 1100–1104 (1960)

    Google Scholar 

  12. R. Arnowitt, S. Deser, C.W. Misner: Consistency of the canonical reduction of general relativity, J. Math. Phys. 1(5), 434–439 (1960)

    Google Scholar 

  13. R. Arnowitt, S. Deser, C.W. Misner: Gravitational-electromagnetic coupling and the classical self-energy problem, Phys. Rev. 120(1), 313–320 (1960)

    Google Scholar 

  14. R. Arnowitt, S. Deser, C.W. Misner: Interior Schwarzschild solutions and interpretation of source terms, Phys. Rev. 120(1), 321–324 (1960)

    Google Scholar 

  15. R. Arnowitt, S. Deser, C.W. Misner: Note on positive-definiteness of the energy of the gravitational field, Ann. Phys. 11(1), 116–121 (1960)

    Google Scholar 

  16. R. Arnowitt, S. Deser, C.W. Misner: Heisenberg representation in classical general relativity, Nuovo Cim. 19(4), 668–681 (1961)

    Google Scholar 

  17. R. Arnowitt, S. Deser, C.W. Misner: Wave zone in general relativity, Phys. Rev. 121(5), 1556–1566 (1961)

    Google Scholar 

  18. R. Arnowitt, S. Deser, C.W. Misner: Coordinate invariance and energy expressions in general relativity, Phys. Rev. 122(3), 997–1006 (1961)

    Google Scholar 

  19. R. Arnowitt, S. Deser, C.W. Misner: The dynamics of general relativity. In: Gravitation: An Introduction to Current Research, ed. by L. Witten (Wiley, New York, London 1962) pp. 227–265, arXiv:gr-qc/0405109

    Google Scholar 

  20. R. Arnowitt, S. Deser, C.W. Misner: Republication of: The Dynamics of general relativity, Gen. Relativ. Gravit. 40(9), 1997–2027 (2008), Republication as Golden Oldie with some minor corrections. Available online as arXiv:gr-qc/0405109

    Google Scholar 

  21. J. Pullin: Editorial note to R. Arnowitt, S. Deser, C.W. Misner: The dynamics of general relativity, Gen. Relativ. Gravit. 40(9), 1989–1995 (2008)

    Google Scholar 

  22. É. Gourgoulhon: 3+1 Formalism in General Relativity, Lecture Notes in Physics, Vol. 846 (Springer, Berlin 2012)

    Google Scholar 

  23. M. Bojowald: Canonical Gravity and Applications. Cosmology, Black Holes, Quantum Gravity (Cambridge Univ. Press, Cambridge 2011)

    Google Scholar 

  24. R. Geroch: Domain of dependence, J. Math. Phys. 11(2), 437–449 (1970)

    Google Scholar 

  25. N. Steenrod: The Topology of Fibre Bundles (Princeton Univ. Press, Princeton 1951)

    Google Scholar 

  26. J.W. Milnor, J.W. Stasheff: Characteristic Classes, Annals of Mathematics Studies, Vol. 76 (Princeton Univ. Press, Princeton 1974)

    Google Scholar 

  27. J.H.C. Whitehead: The immersion of an open 3-manifold in Euclidean 3-space, Proc. Lond. Math. Soc. (3) 11(1), 81–90 (1961)

    Google Scholar 

  28. R. Geroch: Spinor structure of spacetimes in general relativity I, J. Math. Phys. 9(11), 1739–1744 (1968)

    Google Scholar 

  29. M. Spivak: A Comprehensive Introduction to Differential Geometry I–V (Publish or Perish, Wilmington, Delaware 1979)

    Google Scholar 

  30. J.L. Kazdan, F.W. Warner: Scalar curvature and conformal deformation of Riemannian structure, J. Differ. Geom. 10(1), 113–134 (1975)

    Google Scholar 

  31. D. Witt: Vacuum space-times that admit no maximal slices, Phys. Rev. Lett. 57(12), 1386–1389 (1986)

    Google Scholar 

  32. M. Gromov, B. Lawson: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Math. Inst. Ht. Études Sci. 58(1), 83–196 (1983)

    Google Scholar 

  33. D. Giulini: 3-Manifolds for relativists, Int. J. Theor. Phys. 33, 913–930 (1994)

    Google Scholar 

  34. J.W. York: Kinematics and dynamics of general relativity. In: Sources of Gravitational Radiation, ed. by L. Smarr (Cambridge Univ. Press, Cambridge 1979) pp. 83–126

    Google Scholar 

  35. B.S. DeWitt: Quantum theory of gravity. I. The canonical theory, Phys. Rev. 160(5), 1113–1148 (1967)

    Google Scholar 

  36. B.S. DeWitt: Erratum, Phys. Rev. 171(5), 1834 (1968)

    Google Scholar 

  37. C. Kiefer: Quantum Gravity, International Series of Monographs on Physics, Vol. 124, 2nd edn. (Clarendon, Oxford 2007)

    Google Scholar 

  38. D. Giulini: What is the geometry of superspace? Phys. Rev, D 51(10), 5630–5635 (1995)

    Google Scholar 

  39. D. Giulini: The superspace of geometrodynamics, Gen. Relativ. Gravit. 41(4), 785–815 (2009)

    Google Scholar 

  40. C. Blohmann, M.C.B. Fernandes, A. Weinstein: Groupoid symmetry and constraints in general relativity, Commun. Contemp. Math. 15(01), 1250061 (2013)

    Google Scholar 

  41. T. Regge, C. Teitelboim: Role of surface integrals in the Hamiltonian formulation of general relativity, Ann. Phys. 88, 286–318 (1974)

    Google Scholar 

  42. F.G. Markopoulou: Gravitational constraint combinations generate a Lie algebra, Class. Quantum Gravity 13(9), 2577–2584 (1996)

    Google Scholar 

  43. C. Teitelboim: How commutators of constraints reflect the spacetime structure, Ann. Phys. 79(2), 542–557 (1973)

    Google Scholar 

  44. S.A. Hojman, K. Kuchař, C. Teitelboim: Geometrodynamics regained, Ann. Phys. 96, 88–135 (1976)

    Google Scholar 

  45. C.J. Isham, K.V. Kuchař: Representations of spacetime diffeomorphisms. I. Canonical parametrized field theories, Ann. Phys. 164, 288–315 (1985)

    Google Scholar 

  46. C.J. Isham, K.V. Kuchař: Representations of spacetime diffeomorphisms. II. Canonical geometrodynamics, Ann. Phys. 164, 316–333 (1985)

    Google Scholar 

  47. K. Kuchař: Geometrodynamics regained: A Lagrangian approach, J. Math. Phys. 15(6), 708–715 (1974)

    Google Scholar 

  48. D. Lovelock: The four-dimensionality of space and the Einstein tensor, J. Math. Phys. 13(6), 874–876 (1972)

    Google Scholar 

  49. P. Hořava: Quantum gravity at a Lifshitz point, Phys. Rev. 79(8), 084008 (2009)

    Google Scholar 

  50. C.J. Isham: Theta-states induced by the diffeomorphism group in canonically quantized gravity, Quantum Structure of Space And Time. Proc. Nuffield Workshop, Imp. College Lond., ed. by J.J. Duff, C.J. Isham (Cambridge Univ. Press, London 1982) pp. 37–52

    Google Scholar 

  51. D. Giulini: Mapping-class groups of 3-manifolds in canonical quantum gravity. In: Quantum Gravity: Mathematical Models and Experimental Bounds, ed. by B. Fauser, J. Tolksdorf, E. Zeidler (Birkhäuser, Basel 2007), available online at arxiv.org/pdf/gr-qc/0606066

    Google Scholar 

  52. J.A. Wheeler: Geometrodynamics and the issue of the final state. In: Relativity, Groups and Topology. 1963 Les Houches Lectures, ed. by C.M. DeWitt, B.S. DeWitt (Gordon and Breach, New York 1964) pp. 317–520

    Google Scholar 

  53. A. Ashtekar, A.P. Balachandran, S.G. Jo: The CP problem in quantum gravity, Int. J. Mod. Phys. A 4(6), 1493–1514 (1989)

    Google Scholar 

  54. H. Freudenthal: Über die Enden topologischer Räume und Gruppen, Math. Ann. 33(1), 692–713 (1931)

    Google Scholar 

  55. L. Bieri, N. Zipser: Extensions of the Stability Theorem of the Minkowski Space in general relativity, Studies in Advanced Mathematics, Vol. 45 (American Mathematical Society, Providence 2009)

    Google Scholar 

  56. N.Ó. Murchadha: Total energy momentum in general relativity, J. Math. Phys. 27(8), 2111–2128 (1986)

    Google Scholar 

  57. A. Komar: Covariant conservation laws in general relativity, Phys. Rev. 113(3), 934–936 (1959)

    Google Scholar 

  58. R. Beig: Arnowitt–Deser–Misner energy and g 00, Phys. Lett. A 69(3), 153–155 (1978)

    Google Scholar 

  59. A. Ashtekar, A. Magnon-Ashtekar: On conserved quantities in general relativity, J. Math. Phys. 20(5), 793–800 (1979)

    Google Scholar 

  60. P. Chruściel: A remark on the positive-energy theorem, Class. Quantum Gravity 3(6), L115–L121 (1986)

    Google Scholar 

  61. Y. Choquet-Bruhat: General Relativity and the Einstein Equations (Oxford Univ. Press, Oxford 2009)

    Google Scholar 

  62. A. Einstein, W. Pauli: On the non-existence of regular stationary solutions of relativistic field equations, Ann. Math. 44(2), 131–137 (1943)

    Google Scholar 

  63. A. Lichnerowicz: Théories Relativistes de la Gravitation et de l’Électromagnétisme (Masson et Cie, Paris 1955)

    Google Scholar 

  64. D. Gannon: Singularities in nonsimply connected space-times, J. Math. Phys. 16(12), 2364–2367 (1975)

    Google Scholar 

  65. R. Beig, N.Ó. Murchadha: The Poincaré group as symmetry group of canonical general relativity, Ann. Phys. 174, 463–498 (1987)

    Google Scholar 

  66. D. Christodoulou, N.Ó. Murchadha: The boost problem in general relativity, Commun. Math. Phys. 80(2), 271–300 (1981)

    Google Scholar 

  67. D. Giulini: Asymptotic symmetry groups of long-ranged gauge configurations, Mod. Phys. Lett. A 10(28), 2059–2070 (1995)

    Google Scholar 

  68. M.D. Kruskal: Maximal extension of Schwarzschild metric, Phys. Rev. 119(5), 1743–1745 (1960)

    Google Scholar 

  69. S.W. Hawking, G.F.R. Ellis: The Large Scale Structure of Spacetime (Cambridge Univ. Press, Cambridge 1973)

    Google Scholar 

  70. C. Misner, J.A. Wheeler: Classical physics as geometry: Gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space, Ann. Phys. 2, 525–660 (1957)

    Google Scholar 

  71. G.W. Gibbons: The elliptic interpretation of black holes and quantum mechanics, Nucl. Phys. B 98, 497–508 (1986)

    Google Scholar 

  72. J.M. Bowen, J.W. York Jr.: Time-asymmetric initial data for black holes and black-hole collisions, Phys. Rev. D 21(8), 2047–2056 (1980)

    Google Scholar 

  73. T. Thiemann: Modern Canonical Quantum General Relativity, Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge 2007)

    Google Scholar 

  74. C. Rovelli: Quantum Gravity, Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge 2004)

    Google Scholar 

  75. A. Ashtekar: New Hamiltonian formulation of general relativity, Phys. Rev. D 36(6), 1587–1602 (1987)

    Google Scholar 

  76. D. Giulini: Ashtekar variables in classical general relativity. In: Canonical Gravity: From Classical to Quantum, Lecture Notes in Physics, Vol. 434, ed. by J. Ehlers, H. Friedrich (Springer, Berlin, 1994) pp. 81–112

    Google Scholar 

  77. F. Barbero: Real Ashtekar variables for Lorentzian signature space-times, Phys. Rev. D 51(10), 5507–5510 (1995)

    Google Scholar 

  78. C. Kiefer, M. Krämer: Quantum gravitational contributions to the cosmic microwave background anisotropy spectrum, Phys. Rev. Lett. 108(2), 021301 (2012)

    Google Scholar 

  79. D. Bini, G. Esposito, C. Kiefer, M. Krämer, F. Pessina: On the modification of the cosmic microwave background anisotropy spectrum from canonical quantum gravity, Phys. Rev. D 87(10), 104008 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Giulini Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giulini, D. (2014). Dynamical and Hamiltonian Formulation of General Relativity. In: Ashtekar, A., Petkov, V. (eds) Springer Handbook of Spacetime. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41992-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41992-8_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41991-1

  • Online ISBN: 978-3-642-41992-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics