Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 282))

Abstract

This paper presents a model predictive control (MPC) approach for buck-boost converter, a mathematical model is required to synthesis this controller, the typically used model is the averaged model, which describes the converter behavior on the operating point. Buck-boost converter has a nonlinear dynamic behavior; the Takagi–Sugeno (T–S) fuzzy model is used to represent the state-space model of nonlinear system where the consequent part of the fuzzy rule is replaced by linear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guldemir, H.: Modeling and Sliding Mode Control of Dc-Dc Buck-Boost Converter. In: 6th International Advanced Technologies Symposium (IATS 2011), Elazığ, Turkey, May 16-18 (2011)

    Google Scholar 

  2. Ahmad, A., Zhiliu, K., Kinoshita, H.: High Performance Algorithms For the Control of Buck Dc-Dc Converters. International Journal of Engineering Science and Technology 2(10), 5799–5812 (2010)

    Google Scholar 

  3. Inglés, J.V., Garcés, P., Leyva, R.: Robust LMI Control of a Buck-Boost Converter with Low Ripple Propagation. In: Preprints of the 2012 20th Mediterranean Conference on Control & Automation (MED), Barcelona, Spain, July 3-6 (2012)

    Google Scholar 

  4. García, C.E., Prett, D.M., Morari, M.: Model predictive control: Theory and practice, a survey. Automatica 25, 335–348 (1989)

    Article  MATH  Google Scholar 

  5. Tatjewski, P., Nczuk, M.: Soft Computing in Model–Base Predictive Control. Int. J. Appl. Math. Comput. Sci. 16(1), 7–26 (2006)

    MathSciNet  Google Scholar 

  6. Bououden, S., Chadli, M., Filali, S., El Hajjaji, A.: Fuzzy Model Based Multivariable Predictive Control of a Variable Speed Wind Turbine: LMI approach. Renewable Energy 37(1), 434–439 (2012)

    Article  Google Scholar 

  7. Carneiro, G.L., Galvão, R.K.H.: Model Based Predictive Control of an Aircraft With Actuator Failure in a Terrain Following Task. In: 3rd CTA-DLR Workshop on Data Analysis & Flight Control, J. Campos, SP, Brazil, September 14-16 (2009)

    Google Scholar 

  8. Hichem, B., Faouzi, M.: Fast Nonlinear Model Predictive Control using Second Order Valera Models Based Multi-agent Approach. Institut Supérieur Des Etudes Technologiques de SFAX Ecole Nationale d’ingénieur de Monastir Tunisia

    Google Scholar 

  9. Lazar, M., Roset, B.J.P., Heemels, W.P.M.H., Nijmeijer, H., van den Bosch, P.P.J.: Input-To-State Stabilizing Sub-Optimal Nonlinear Mpc Algorithms with an Application to DC-DC Converters. In: IFAC (2006)

    Google Scholar 

  10. Leung, F.H.F., Tam, P.K.S., Li, C.K.: The Control of Switching DC-DC Converters–A General LQR Problem. IEEE Transactions on Industrial Electronics 38, 65–71 (1991)

    Article  Google Scholar 

  11. Sira-Ramirez, H., Perez-Moreno, R.A., Ortega, R., Garcia-Esteban, M.: Passivity-based controllers for the stabilization of DC-to-DC power converters. Automatica 33, 499–513 (1997)

    Article  MathSciNet  Google Scholar 

  12. Sira-Ramirez, H.: On the Generalized PI Sliding Mode Control of DC-to-DC Power Converters: A Tutorial. International Journal of Control 76, 1018–1033 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 15, 116–132 (1985)

    Article  MATH  Google Scholar 

  14. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Hazil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hazil, O., Bououden, S., Chadli, M., Filali, S. (2014). Fuzzy Model Predictive Control of DC-DC Converters. In: Zelinka, I., Duy, V., Cha, J. (eds) AETA 2013: Recent Advances in Electrical Engineering and Related Sciences. Lecture Notes in Electrical Engineering, vol 282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41968-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41968-3_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41967-6

  • Online ISBN: 978-3-642-41968-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics