Mechanism for Adaptation of Group Decision-making in Multi-agent E-Learning Environment

  • Denis Mušić
Part of the Studies in Computational Intelligence book series (SCI, volume 528)


Intense and stressful group decision-making has become a daily activity in the modern business environments which caused greater interest in systems that allow simulation of group decision-making with agents as human representatives (surrogates). Development of representative agents is significantly enhanced through use of methods that allow mapping of some of the most important human traits in the world of agents. These traits are emotions, personality and mood which gain importance by their direct effect on the process of individual and therefore group decision-making. In order to provide more stable and efficient group decision-making, this chapter presents the research results of applying concepts of experience and patience to the emotional agents in eLearning environment. Concept of experience is implemented by using Reinforcement learning technique called Q-learning in combination with Self-organizing map, while concept of patience is implemented by introducing a Self-regulation coefficient.


Agents Patience Q-learning SOM Self-regulation coefficient 



Special thanks go to Carlos Ramos (Vice president of the Polytechnic Institute of Porto) and Goreti Marreiros (Knowledge Engineering and Decision Support Research Center-GECAD) on their generous assistance and provided opportunity to collaborate with them.


  1. 1.
    Beyerlein, M.M., Johnson, D.A., Beyerlein, S.T.: Advances in Interdisciplinary Studies of Work Teams. JAI, Greenwich (1997)Google Scholar
  2. 2.
    Sarit, K., Katia, S., Amir, E.: Reaching agreements through argumentation: A logical model and implementation. Artif. Intell. 104(1–2), 1–69 (1998)MATHGoogle Scholar
  3. 3.
    Tate, A., Chen-Burger, Y.H., Dalton, J., Potter, S., Richardson, D., Stader, J., Wickler, G., Bankier, I., Walton, C., Williams, P.: I-room: A virtual space for intelligent interaction. IEEE Intell. Syst. 25(4), 62–71 (2010)Google Scholar
  4. 4.
    Marreiros, G., Santos, R., Ramos, C., Neves, J.: Context-aware emotion-based model for group decision making. IEEE Intell. Syst. 25(2), 31–39 (2010)CrossRefGoogle Scholar
  5. 5.
    Santos, R., Marreiros, G., Ramos, C., Neves, J., Bulas-Cruz, J.: Personality, emotion, and mood in agent-based group decision making. IEEE Intell. Syst. 26(6), 58–66 (2011)CrossRefGoogle Scholar
  6. 6.
    Patrick, G.: ALMA: A layered model of affect. In: 4th International Joint Conference on Autonomous Agents and Multiagent Systems; AAMAS ‘05, pp. 29–36 (2005). ISBN: 1-59593-093-0Google Scholar
  7. 7.
    Richard, M.R.: Theories of Personality. Wadsworth Publishing Company, Belmont (2003). ISBN 978-0534619886Google Scholar
  8. 8.
    Mayer, J.D.: A Classification of DSM-IV-TR Mental Disorders According to their Relation to the Personality System. Comprehensive handbook of personality and psychopathology (CHOPP). vol. 1, Wiley, Hoboken (2006). ISBN: 0471739138Google Scholar
  9. 9.
    Arjan, E., Sumedha, K., Nadia, M-T.: A Model for Personality and Emotion Simulation. Lecture Notes in Computer Science, vol. 2773, pp 453–461 (2003). ISBN: 978-3-540-40803-1Google Scholar
  10. 10.
    Howard, P.J., Howard, J.M.: The big five quickstart: An introduction to the five-factor model of personality for human resource professionals. Education Resource Information Center (1995)Google Scholar
  11. 11.
    Oliver, P.J., Sanjay, S.: The big five trait taxonomy: History, measurement, and theoretical perspectives. In: John, O.P., Robins, R.W., Pervin, L.A. (eds.) Handbook of Personality: Theory and Research, pp. 102–138. The Guilford press, New York (1999)Google Scholar
  12. 12.
    Ricardo, S., Goreti, M., Carlos, R., José, N., José, B.-C.: Using personality types to support argumentation. In: 6th International Conference on Argumentation in Multi-Agent Systems, ArgMAS’09, pp. 292–304. Springer, Berlin (2010). ISBN:3-642-12804-1Google Scholar
  13. 13.
    Anita, V.C.: Psychology of Moods. Nova Publishers, Hauppauge (2005). ISBN 978-1594543098Google Scholar
  14. 14.
    Mehrabian, A.: Analysis of the big-five personality factors in terms of the PAD temperament model. Aust. J. Psychol. 48, 86–92 (1996)CrossRefGoogle Scholar
  15. 15.
    Frijda, N.H.: The Laws of Emotion. Lawrence Erlbaum Associates, (2006). ISBN: 978-0805825978Google Scholar
  16. 16.
    Diana, A., Javier, V., Francisco, J.P.: Generation and visualization of emotional states in virtual characters. Comput. Anim. Virtual Worlds. 19(3–4), 259–270 (2008)Google Scholar
  17. 17.
    Van der Lei, K.: A review of the current state of emotion modeling for virtual agents. In: 14th Twente Student Conference on IT, vol. 14. University of Twente, Enschede (2011)Google Scholar
  18. 18.
    Reinhardt, D., Levi, P., Meyer, J.-J.C.: Emotions as heuristics in multi-agent systems. In: Proceedings of the 1st Workshop on Emotion and Computing—Current Research and Future Impact (2006)Google Scholar
  19. 19.
    Grossberg, S., Gutowski, W.: Neural dynamics of decision making under risk. Psychol. Rev. 94, 300 (1987)CrossRefGoogle Scholar
  20. 20.
    Damásio, A.R.: Descartes’ Error: Emotion, Reason and the Human Brain. G.P. Putnam’s Sons, New York City (1994). ISBN 978-0-399-13894-2Google Scholar
  21. 21.
    De Sousa, R.: Why think? Evolution and the Rational Mind. Oxford University Press, Oxford (2002). ISBN 978-0195189858Google Scholar
  22. 22.
    Klaus, R.S.: What are emotions? And how can they be measured? Social Sci. Inf. 44(4), 695–729 (2005)CrossRefGoogle Scholar
  23. 23.
    Andrew, O.: On making believable emotional agents believable. In: Trappl, R., Petta, P., Payr, S. (eds.) Emotions in Humans and Artefacts, pp. 189–212. MIT Press, Cambridge (2003)Google Scholar
  24. 24.
    Andrew, O., Gerald, L.C., Allan, C.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1990). ISBN 978-0521386647Google Scholar
  25. 25.
    Dudley, K.C.: Empirical development of a scale of patience. Dissertation submitted to the College of Human Resources and Education, West Virginia University (2003)Google Scholar
  26. 26.
    Blount S., Janicik, G.A.: Comparing Social Accounts of Patience and Impatience. Unpublished manuscript, University of Chicago (1999)Google Scholar
  27. 27.
    Blount S., Janicik, G.A.: What makes us Patient? The Role of Emotion in Socio-Temporal Evaluation. Unpublished manuscript, University of Chicago (2000)Google Scholar
  28. 28.
    Baumeister, R.F., Vohs, K.D.: Handbook of Self-Regulation: Research, Theory, and Applications. Guilford Press, New York (2004). ISBN 978-1572309913Google Scholar
  29. 29.
    Salovey, P., Mayer, J.: Emotional Intelligence. Imagination, Cognition and Personality, vol. 9, pp. 185–211. Baywood Publishing, New York (1990)Google Scholar
  30. 30.
    Sander, L.K., Lotte, F.D., Gal, S.: The self-regulation of emotion. In: Boekaerts, M., Pintrich, P.R., Zeidner, M. (eds.) Handbook of Self-Regulation. The Guilford Press, New York (2010). ISBN 978-1-60623-948-3Google Scholar
  31. 31.
    Lazarus, R.S.: Progress on a cognitive-motivational-relational theory of emotion. Am. Psychol. 46(8), 819–834 (1991)CrossRefGoogle Scholar
  32. 32.
    Parrott, W.: Emotions in Social Psychology. Psychology Press, London (2001). ISBN 9780863776823Google Scholar
  33. 33.
    Rick, H.H., Erin, K.B.: Measurement and modeling of self-regulation: Is standardization a reasonable goal? National Research Council Workshop on Advancing Social Science Theory (2010)Google Scholar
  34. 34.
    Charles, S.C., Michael, F.S.: On the Self-Regulation of Behavior. Cambridge University Press, Cambridge (2001). ISBN 978-0521000994Google Scholar
  35. 35.
    Kathryn, L.J., David, R.H.: Sociological realms of emotional experience. Am. J. Sociol. 109(5), 1109–1136 (2004)CrossRefGoogle Scholar
  36. 36.
    Kathryn, L.: Emotional segues and the management of emotion by women and men. Soc. Forces 87(2), 911–936 (2008)CrossRefGoogle Scholar
  37. 37.
    Morgan, R.I., David, R.H.: Structure of emotions. Social Psychol. 51(1), 19–31 (1988)CrossRefGoogle Scholar
  38. 38.
    Andrew, G.B., Richard, S.S.: Reinforcement learning: An introduction. In: Sutton, J., Barto, A.G. (eds.) A Bradford Book. MIT Press, Cambridge (1998). ISBN 9780262193986Google Scholar
  39. 39.
    Smith, A.J.: Applications of the self-organizing map to reinforcement learning. J. Neural Netw.: New Dev. Self-Organ. Maps 15(8-9), 1107–1124 (2002)CrossRefGoogle Scholar
  40. 40.
    Touzet, C.: Neural reinforcement learning for behavior synthesis. Robot. Auton. Syst. 22(3–4), 251–281 (1997)CrossRefGoogle Scholar
  41. 41.
    Touzet, C.: Modeling and simulation of elementary robot behaviors using associative memories. Int. J. Adv. Robot. Syst. (2006). ISBN: 1729-8806Google Scholar
  42. 42.
    Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Berlin (2001). ISBN 978-3540679219CrossRefMATHGoogle Scholar
  43. 43.
    Ben, K., Patrick, S.: An Introduction to Neural Networks. Lecture Notes (1996)Google Scholar
  44. 44.
    Tom, M.: Machine Learning. McGraw-Hill Science/Engineering/Math, NY (1997). ISBN 978-0070428072Google Scholar
  45. 45.
    Taylor, J.G.: Mathematical Approaches to Neural Networks. Elsevier, Amsterdam (1993). ISBN 9780080887395MATHGoogle Scholar
  46. 46.
    Evangelos, T.: Multi-Criteria Decision Making Methods: A Comparative Study. Applied optimization, vol. 44. Springer, Berlin (2000). ISBN: 978-0792366072Google Scholar
  47. 47.
    Music, D.: Patience in group decision-making with emotional agents. In: Trends in Practical Applications of Agents and Multiagent Systems, PAAMS 2013, vol. 221, Springer, Berlin (2013). ISBN: 978-3-319-00562-1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Faculty of Information TechnologiesUniversity Dzemal BijedicMostarBosnia and Herzegovina

Personalised recommendations