Skip to main content

Color Image Compression by Riemannian B-Tree Triangular Coding

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8034))

Included in the following conference series:

  • 2631 Accesses

Abstract

We propose an enhancement of the B-Tree-Triangulation coding technique in a Riemannian framework . Our method focuses on the subdivision criteria in the triangulation process, and compares results obtained by means of two different metrics: the Euclidean and the Riemannian one. Comparison between input and compressed/decompressed images, in terms of a set of image quality measures, shows better performance of Riemannian triangulation in low intensity levels, while using Euclidean distance works better in high intensities. We therefore propose two combined decision cirtirea and compare image quality measures. Results show an enhancement of image quality at similar compression rates, and are promissing for further adjustments to specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Distasi, R., Nappi, M., Vitulano, S.: Image compression by b-tree triangular coding. IEEE Transactions on Communications, 1095–1100 (1997)

    Google Scholar 

  2. Prasad, M.V.N.K., Mishra, V.N., Shukla, K.K.: Space partitioning based image compression using quality measures for subdivision decision. Appl. Soft Comput. 3, 273–282 (2003)

    Article  Google Scholar 

  3. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. Journal of Mathematical Imaging and Vision 31, 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  4. Chung, K.L., Wu, J.G.: Improved image compression using s-tree and shading approach. IEEE Transactions on Communications 48, 748–751 (2000)

    Article  Google Scholar 

  5. Zemcik, P., Vorcek, J., Frydrych, M., Klviinen, H., Toivanen, P.: Multispectral image color encoding. In: International Conference on Pattern Recognition, vol. 3, p. 3609 (2000)

    Google Scholar 

  6. Santa-Cruz, D., Ebrahimi, T.: A study of jpeg 2000 still image coding versus other standards. In: Proc. of the X European Signal Processing Conference, vol. 2, pp. 673–676 (2000)

    Google Scholar 

  7. Sudhakar, R., Karthiga, R., Jayaraman, S.: Image compression using coding of wavelet coefficients: A survey. In: GVIP 2005, pp. 25–38 (2005)

    Google Scholar 

  8. Demaret, L., Dyn, N., Iske, A.: Image compression by linear splines over adaptive triangulations. Signal Processing 86, 1604–1616 (2006)

    Article  MATH  Google Scholar 

  9. Davoine, F., Antonini, M., Chassery, J.M., Barlaud, M.: Fractal image compression based on delaunay triangulation and vector quantization. International Conference on Pattern Recognition 5, 3609 (2000)

    Google Scholar 

  10. Vos, J.: From lower to higher colour metrics: a historical account. Clinical and Experimental Optometry 89, 348–360 (2006)

    Article  Google Scholar 

  11. Frese, T., Bouman, C.A., Allebach, J.P.: A methodology for designing image similarity metrics based on human visual system models. In: Proceedings of SPIE/IS & T Conference on Human Vision and Electronic Imaging II, pp. 472–483 (1997)

    Google Scholar 

  12. Jost, J.: Riemannian Geometry and Geometric Analysis, 5th edn. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  13. Zéraï, M., Triki, O.: A differential-geometrical framework for color image quality measures. In: Bebis, G., et al. (eds.) ISVC 2010, Part III. LNCS, vol. 6455, pp. 544–553. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Von Helmholtz, V.: Handbuch der Physiologischen Optik. Voss, Hamburg (1896)

    Google Scholar 

  15. Stiles, W.S., Wyszecki, G.: Color Science Concepts and Methods, Quantitative Data and Formulae. John Wiley and Sons, Inc., Chichester (2000)

    Google Scholar 

  16. Eskicioglu, A.M.: Quality measurement for monochrome compressed images in the past 25 years. In: Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2000, vol. 6, pp. 1907–1910 (2000)

    Google Scholar 

  17. Sakuldee, R., Udomhunsakul, S.: Objective performance of compressed image quality assessments. International Journal of Computer Science 2, 258–267 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Triki, O., Zéraï, M. (2013). Color Image Compression by Riemannian B-Tree Triangular Coding. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41939-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41939-3_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41938-6

  • Online ISBN: 978-3-642-41939-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics