Skip to main content

BST-CarGel®: An Enhanced Bone Marrow Stimulation Treatment

  • Chapter
  • First Online:
Techniques in Cartilage Repair Surgery

Abstract

Bone marrow stimulation techniques such as abrasion arthroplasty [1], Pridie drilling [2], and microfracture [3] attempt to use the natural wound repair response elicited by a blood clot originating from the bone marrow. Channels surgically made in the subchondral bone below the cartilage lesion permit access to marrow blood and blood components including stem cells intended to provide an environment for wound healing that ultimately leads to cartilage regeneration. Microfracture, which has been frequently used as a first-line treatment for small cartilage lesions, has the advantage of being simple and safe, cost-effective, and minimally invasive with a low morbidity rate [4, 5]. On the other hand, the procedure results in a mixed repair tissue with mainly fibrous or fibrocartilaginous properties [6–10], limited collagen type II and glycosaminoglycan (GAG) levels, and poor mechanical properties compared to native hyaline cartilage. Indeed, the long-term durability of this repair tissue has been questioned with many reports showing a failure of repair tissue and a return of associated clinical symptoms starting as early as 24 months posttreatment [8, 11, 12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson LL (1986) Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy 2(1):54–69

    Article  CAS  PubMed  Google Scholar 

  2. Insall JN (1967) Intra-articular surgery for degenerative arthritis of the knee. A report of the work of the late K. H. Pridie. J Bone Joint Surg Br 49(2):211–228

    CAS  PubMed  Google Scholar 

  3. Steadman JR, Rodkey WG, Singleton SB, Briggs KK (1997) Microfracture technique for full-thickness chondral defects: technique and clinical results. Oper Tech Orthop 7(4):300–304

    Article  Google Scholar 

  4. Mithoefer K, Williams RJ 3rd, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL, Marx RG (2006) Chondral resurfacing of articular cartilage defects in the knee with the microfracture technique. Surgical technique. J Bone Joint Surg Am 88(Suppl 1 Pt 2):294–304

    Article  PubMed  Google Scholar 

  5. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19(5):477–484

    Article  PubMed  Google Scholar 

  6. Frisbie DD, Trotter GW, Powers BE, Rodkey WG, Steadman JR, Howard RD, Park RD, McIlwraith CW (1999) Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg 28(4):242–255

    Article  CAS  PubMed  Google Scholar 

  7. Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 89(10):2105–2112

    PubMed  Google Scholar 

  8. Mithoefer K, Williams R Jr, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL, Marx RG (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 87(9):1911–1920

    Article  PubMed  Google Scholar 

  9. Saris DB, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y, Vandekerckhove B, Almqvist KF, Claes T, Handelberg F, Lagae K, van der Bauwhede J, Vandenneucker H, Yang KG, Jelic M, Verdonk R, Veulemans N, Bellemans J, Luyten FP (2008) Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 36(2):235–246

    Article  PubMed  Google Scholar 

  10. Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop 391(Suppl):S362–S369

    Article  Google Scholar 

  11. Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, Sudkamp N (2006) Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 14(11):1119–1125

    Article  CAS  PubMed  Google Scholar 

  12. Vanlauwe J, Saris DB, Victor J, Almqvist KF, Bellemans J, Luyten FP (2011) Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med 39(12):2566–2574

    Article  PubMed  Google Scholar 

  13. Gomoll AH (2012) Microfracture and augments. J Knee Surg 25(1):9–15

    Article  PubMed  Google Scholar 

  14. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in-situ. Biomaterials 21:2155–2161

    Article  CAS  PubMed  Google Scholar 

  15. Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26(30):5983–5990

    Article  PubMed  Google Scholar 

  16. Kumar MN, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084

    Article  PubMed  Google Scholar 

  17. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol (NY) 8(3):203–226

    Article  CAS  Google Scholar 

  18. Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133(2):185–192

    Article  CAS  PubMed  Google Scholar 

  19. Hoemann CD, Sun J, McKee MD, Chevrier A, Rossomacha E, Rivard GE, Hurtig M, Buschmann MD (2007) Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthritis Cartilage 15(1):78–89

    Article  CAS  PubMed  Google Scholar 

  20. Marchand C, Rivard GE, Sun J, Hoemann CD (2009) Solidification mechanisms of chitosan-glycerol phosphate/blood implant for articular cartilage repair. Osteoarthritis Cartilage 17(7):953–960

    Article  CAS  PubMed  Google Scholar 

  21. Chevrier A, Hoemann CD, Sun J, Buschmann MD (2007) Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects. Osteoarthritis Cartilage 15(3):316–327

    Article  CAS  PubMed  Google Scholar 

  22. Henriksen I, Green KL, Smart JD, Smistad G, Karlsen J (1996) Bioadhesion of hydrated chitosans: an in vitro and in vivo study. Int J Pharm 145:231–240

    Article  CAS  Google Scholar 

  23. Hoemann CD, Hurtig M, Rossomacha E, Sun J, Chevrier A, Shive MS, Buschmann MD (2005) Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg Am 87(12):2671–2686

    PubMed  Google Scholar 

  24. van den Berg WB, van Lent PL, van de Putte LB, Zwarts WA (1986) Electrical charge of hyaline articular cartilage: its role in the retention of anionic and cationic proteins. Clin Immunol Immunopathol 39(2):187–197

    Article  PubMed  Google Scholar 

  25. Iliescu M, Hoemann CD, Shive MS, Chenite A, Buschmann MD (2008) Ultrastructure of hybrid chitosan-glycerol phosphate blood clots by environmental scanning electron microscopy. Microsc Res Tech 71(3):236–247

    Article  CAS  PubMed  Google Scholar 

  26. Chen H, Chevrier A, Hoemann CD, Sun J, Ouyang W, Buschmann MD (2011) Characterization of subchondral bone repair for marrow-stimulated chondral defects and its relationship to articular cartilage resurfacing. Am J Sports Med 39(8):1731–1740

    Article  PubMed  Google Scholar 

  27. Muzzarelli RA (1997) Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell Mol Life Sci 53(2):131–140

    Article  CAS  PubMed  Google Scholar 

  28. Varum KM, Myhr MM, Hjerde RJ, Smidsrod O (1997) In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res 299(1–2):99–101

    Article  CAS  PubMed  Google Scholar 

  29. Chevrier A, Hoemann CD, Sun J, Buschmann MD (2011) Temporal and spatial modulation of chondrogenic foci in subchondral microdrill holes by chitosan-glycerol phosphate/blood implants. Osteoarthritis Cartilage 19(1):136–144

    Article  CAS  PubMed  Google Scholar 

  30. Chen G, Sun J, Lascau-Coman V, Chevrier A, Marchand C, Hoemann CD (2011) Acute osteoclast activity following subchondral drilling is promoted by chitosan and associated with improved cartilage repair tissue integration. Cartilage 2(2):173–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoemann CD, Chen G, Marchand C, Tran-Khanh N, Thibault M, Chevrier A, Sun J, Shive MS, Fernandes MJ, Poubelle PE, Centola M, El-Gabalawy H (2010) Scaffold-guided subchondral bone repair: implication of neutrophils and alternatively activated arginase-1+ macrophages. Am J Sports Med 38(9):1845–1856

    Article  PubMed  Google Scholar 

  32. Marchand C, Chen G, Tran-Khanh N, Sun J, Chen H, Buschmann MD, Hoemann CD (2012) Microdrilled cartilage defects treated with thrombin-solidified chitosan/blood implant regenerate a more hyaline, stable, and structurally integrated osteochondral unit compared to drilled controls. Tissue Eng Part A 18(5–6):508–519

    Article  CAS  PubMed  Google Scholar 

  33. Goldring MB, Goldring SR (2010) Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 1192:230–237

    Article  CAS  PubMed  Google Scholar 

  34. Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, Kon E (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 18(4):434–447

    Article  PubMed  PubMed Central  Google Scholar 

  35. Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T (2009) Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 37(5):902–908

    Article  PubMed  Google Scholar 

  36. Pestka JM, Bode G, Salzmann G, Sudkamp NP, Niemeyer P (2012) Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med 40(2):325–331

    Article  PubMed  Google Scholar 

  37. McNickle AG, L’Heureux DR, Yanke AB, Cole BJ (2009) Outcomes of autologous chondrocyte implantation in a diverse patient population. Am J Sports Med 37(7):1344–1350

    Article  PubMed  Google Scholar 

  38. Zaslav K, Cole B, Brewster R, DeBerardino T, Farr J, Fowler P, Nissen C (2009) A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the Study of the Treatment of Articular Repair (STAR) clinical trial. Am J Sports Med 37(1):42–55

    Article  PubMed  Google Scholar 

  39. Chen H, Hoemann CD, Sun J, Chevrier A, McKee MD, Shive MS, Hurtig M, Buschmann MD (2011) Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res 29(8):1178–1184

    Article  PubMed  Google Scholar 

  40. Frisbie DD, Morisset S, Ho CP, Rodkey WG, Steadman JR, McIlwraith CW (2006) Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med 34(11):1824–1831

    Article  PubMed  Google Scholar 

  41. Brun P, Dickinson SC, Zavan B, Cortivo R, Hollander AP, Abatangelo G (2008) Characteristics of repair tissue in second-look and third-look biopsies from patients treated with engineered cartilage: relationship to symptomatology and time after implantation. Arthritis Res Ther 10(6):R132

    Article  PubMed  PubMed Central  Google Scholar 

  42. Welsch GH, Mamisch TC, Zak L, Blanke M, Olk A, Marlovits S, Trattnig S (2010) Evaluation of cartilage repair tissue after matrix-associated autologous chondrocyte transplantation using a hyaluronic-based or a collagen-based scaffold with morphological MOCART scoring and biochemical T2 mapping: preliminary results. Am J Sports Med 38(5):934–942

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

BST-CarGel® has been developed by Piramal Healthcare Bio-Orthopedics (formerly BioSyntech Canada Inc.). We are indebted to Professors Michael Buschmann and Caroline Hoemann, the inventors of BST-CarGel®, along with the Biomaterials and Cartilage Laboratory at Ecole Polytechnique of Montreal, who established the basic scientific foundation for BST-CarGel®. We are grateful to Dr. Jun Sun and Dr. Mark Hurtig for their animal surgery expertise. We thank Drs. Nicolas Duval and Pierre Ranger for their contributions with the pilot clinical use of BST-CarGel®. The critical efforts of the BST-CarGel® Clinical Study Group, including the investigators, sub-investigators, research coordinators, and physiotherapists who tirelessly contributed to the success of the clinical trial are warmly acknowledged. Other clinical trial activities carried out by Cato Canada (Montreal), MRI activities by VirtualScopics (Rochester, NY) and Qmetrics (Rochester, NY), and statistical expertise by Dr. Alex Yaroshinsky (San Andreas, CA) are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Restrepo MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 ESSKA

About this chapter

Cite this chapter

Restrepo, A., Méthot, S., Stanish, W.D., Shive, M.S. (2014). BST-CarGel®: An Enhanced Bone Marrow Stimulation Treatment. In: Shetty, A.A., Kim, SJ., Nakamura, N., Brittberg, M. (eds) Techniques in Cartilage Repair Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41921-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41921-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41920-1

  • Online ISBN: 978-3-642-41921-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics