Skip to main content

Efficient Transmission and Rendering of RGB-D Views

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8033)

Abstract

For the autonomous navigation of the robots in unknown environments, generation of environmental maps and 3D scene reconstruction play a significant role. Simultaneous localization and mapping (SLAM) helps the robots to perceive, plan and navigate autonomously whereas scene reconstruction helps the human supervisors to understand the scene and act accordingly during joint activities with the robots. For successful completion of these joint activities, a detailed understanding of the environment is required for human and robots to interact with each other. Generally, the robots are equipped with multiple sensors and acquire a large amount of data which is challenging to handle. In this paper we propose an efficient 3D scene reconstruction approach for such scenarios using vision and graphics based techniques. This approach can be applied to indoor, outdoor, small and large scale environments. The ultimate goal of this paper is to apply this system to joint rescue operations executed by human and robot teams by reducing a large amount of point cloud data to a smaller amount without compromising on the visual quality of the scene. From thorough experimentation, we show that the proposed system is memory and time efficient and capable to run on the processing unit mounted on the autonomous vehicle. For experimentation purposes, we use standard RGB-D benchmark dataset.

Keywords

  • Point Cloud
  • Visual Quality
  • World Trade Center
  • Point Cloud Data
  • Robot Team

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-41914-0_51
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-41914-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kruijff, C.D.G.J.M.: EU FP7 NIFTi “Natural human-robot cooperation in dynamic environments”. Funded by the EU FP7 as part of its ICT program, contract #247870 (2010)

    Google Scholar 

  2. Engelhard, N., Endres, F., Hess, J., Sturm, J., Burgard, W.: Real-time 3d visual slam with a hand-held rgb-d camera. In: Proc. of the RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum, Sweden (2011)

    Google Scholar 

  3. Nüchter, A., Lingemann, K., Hertzberg, J., Surmann, H.: 6d slam - 3d mapping outdoor environments. J. Field Robotics 24, 699–722 (2007)

    CrossRef  MATH  Google Scholar 

  4. Kohlbrecher, S., Meyer, J., von Stryk, O., Klingauf, U.: A flexible and scalable slam system with full 3d motion estimation. In: Proc. IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR). IEEE (2011)

    Google Scholar 

  5. Stückler, J., Behnke, S.: Multi-resolution surfel maps for efficient dense 3d modeling and tracking. Journal of Visual Communication and Image Representation (2013)

    Google Scholar 

  6. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of rgb-d slam systems. In: Proc. of the International Conference on Intelligent Robot Systems, IROS (2012)

    Google Scholar 

  7. Murphy, R., Burke, J.L.: Up from the rubble: Lessons learned about hri from search and rescue. In: Proceedings of the 49th Annual Meetings of the Human Factors and Ergonomics Society, pp. 437–441 (2005)

    Google Scholar 

  8. Kruijff, G., Colas, F., Svoboda, T., van Diggelen, J., Balmer, P., Pirri, F., Worst, R.: Designing intelligent robots for human-robot teaming in urban search & rescue. In: Proceedings of the AAAI 2012 Spring Symposium on Designing Intelligent Robots (2012)

    Google Scholar 

  9. Larochelle, B., Kruijff, G.J.M.: Multi-view operator control unit to improve situation awareness in usar missions. In: 2012 IEEE RO-MAN, pp. 1103–1108. IEEE (2012)

    Google Scholar 

  10. Burke, J., Murphy, R., Coovert, M., Riddle, D.: Moonlight in Miami: An ethnographic study of human-robot interaction in USAR. Human Computer Interaction 19, 85–116 (2004)

    CrossRef  Google Scholar 

  11. Burke, J., Murphy, R., Rogers, E., Lumelsky, V., Scholtz, J.: Final report for the DARPA/NSF interdisciplinary study on human-robot interaction. In: IEEE Systems, Man and Cybernetics Part C: Applications and Reviews, Special Issue on Human-Robot Interaction, vol. 34, pp. 103–112 (2004)

    Google Scholar 

  12. Casper, J., Murphy, R.: Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Transactions on Systems, Man, and Cybernetics, Part B 33, 367–385 (2003)

    CrossRef  Google Scholar 

  13. Murphy, R.R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., Erkmen, A.M.: Search and Rescue Robotics. In: Handbook of Robotics, pp. 1151–1173. Springer (2008) ISBN 978-3-540-30301-5

    Google Scholar 

  14. Murphy, R.: Tutorial – introduction to rescue robotics. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR (2011)

    Google Scholar 

  15. Le, V.T., Moraru, V., Bouraqadi, N., Stinckwich, S., Bourdon, F., Nguyen, H.Q.: Issues and challenges in building a robust communication platform for usar robots (2007)

    Google Scholar 

  16. Carlson, J., Murphy, R.: How UGVs physically fail in the field. IEEE Transactions on Robotics 21, 423–437 (2005)

    CrossRef  Google Scholar 

  17. Sugiyama, H., Tsujioka, T., Murata, M.: Autonomous chain network formation by multi-robot rescue system with ad hoc networking. In: 2010 IEEE International Workshop on Safety Security and Rescue Robotics (SSRR), pp. 1–6 (2010)

    Google Scholar 

  18. Ribeiro, C., Ferworn, A., Tran, J.: Wireless mesh network performance for urban search and rescue missions. arXiv (2010)

    Google Scholar 

  19. Couceiro, M.S., Rocha, R.P., Ferreira, N.M.: Ensuring ad hoc connectivity in distributed search with robotic darwinian particle swarms. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 284–289. IEEE (2011)

    Google Scholar 

  20. Murphy, R.: Trial by fire [rescue robots]. IEEE Robotics & Automation Magazine 11, 50–61 (2004)

    CrossRef  Google Scholar 

  21. Birk, A., Schwertfeger, S., Pathak, K., Vaskevicius, N.: 3d data collection at disaster city at the 2008 nist response robot evaluation exercise (rree). In: 2009 IEEE International Workshop on Safety, Security & Rescue Robotics (SSRR), pp. 1–6. IEEE (2009)

    Google Scholar 

  22. Poppinga, J., Vaskevicius, N., Birk, A., Pathak, K.: Fast plane detection and polygonalization in noisy 3d range images. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3378–3383 (2008)

    Google Scholar 

  23. Wiemann, T., Nuchter, A., Lingemann, K., Stiene, S., Hertzberg, J.: Automatic construction of polygonal maps from point cloud data. In: 2010 IEEE International Workshop on Safety Security and Rescue Robotics (SSRR), pp. 1–6. IEEE (2010)

    Google Scholar 

  24. Schnabel, R., Klein, R.: Octree-based point-cloud compression. In: Symposium on Point-based Graphics, pp. 111–120. The Eurographics Association (2006)

    Google Scholar 

  25. Marton, Z.C., Rusu, R.B., Beetz, M.: On Fast Surface Reconstruction Methods for Large and Noisy Datasets. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan (2009)

    Google Scholar 

  26. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-d mapping: Using depth cameras for dense 3D modeling of indoor environments (2011)

    Google Scholar 

  27. Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: Visual odometry and mapping for autonomous flight using an RGB-d camera. In: Int. Symposium on Robotics Research (ISRR), Flagstaff, Arizona, USA (2011)

    Google Scholar 

  28. Bachrach, A., Prentice, S., He, R., Henry, P., Huang, A.S., Krainin, M., Maturana, D., Fox, D., Roy, N.: Estimation, planning, and mapping for autonomous flight using an rgb-d camera in gps-denied environments. I. J. Robotic Res. 31, 1320–1343 (2012)

    CrossRef  Google Scholar 

  29. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110, 346–359 (2008)

    CrossRef  Google Scholar 

  30. Rusu, R.B., Cousins, S.: 3D is here: Point cloud library (PCL). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (2011)

    Google Scholar 

  31. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: VISAPP International Conference on Computer Vision Theory and Applications, pp. 331–340 (2009)

    Google Scholar 

  32. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots (2013), Software available at http://octomap.github.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riaz, Z., Linder, T., Behnke, S., Worst, R., Surmann, H. (2013). Efficient Transmission and Rendering of RGB-D Views. In: , et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41914-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41914-0_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41913-3

  • Online ISBN: 978-3-642-41914-0

  • eBook Packages: Computer ScienceComputer Science (R0)