Transactions on Computational Science XX pp 22-38

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8110)

On the Construction of Generalized Voronoi Inverse of a Rectangular Tessellation

  • Sandip Banerjee
  • Bhargab B. Bhattacharya
  • Sandip Das
  • Arindam Karmakar
  • Anil Maheshwari
  • Sasanka Roy

Abstract

We introduce a new concept of constructing a generalized Voronoi inverse (GVI) of a given tessellation \({\mathcal T}\) of the plane. Our objective is to place a set Si of one or more sites in each convex region (cell) \(t_i \in{\mathcal T}\), such that all edges of \({\mathcal T}\) coincide with edges of Voronoi diagram V(S), where S = ∪ iSi, and ∀ i,j, i ≠ j, Si ∩ Sj = ∅. Computation of GVI in general, is a difficult problem. In this paper, we study properties of GVI for the case when \(\mathcal T\) is a rectangular tessellation and propose an algorithm that finds a minimal set of sites S. We also show that for a general tessellation, a solution of GVI always exists.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sandip Banerjee
    • 1
  • Bhargab B. Bhattacharya
    • 1
  • Sandip Das
    • 1
  • Arindam Karmakar
    • 2
  • Anil Maheshwari
    • 3
  • Sasanka Roy
    • 4
  1. 1.ACM UnitIndian Statistical InstituteKolkataIndia
  2. 2.Tezpur UniversityTezpurIndia
  3. 3.Carleton UniversityOttawaCanada
  4. 4.Chennai Mathematical InstituteChennaiIndia

Personalised recommendations