Skip to main content

Predicting Evolution and Visualizing High-Dimensional Fitness Landscapes

  • Chapter

Part of the Emergence, Complexity and Computation book series (ECC,volume 6)

Abstract

The tempo and mode of an adaptive process is strongly determined by the structure of the fitness landscape that underlies it. In order to be able to predict evolutionary outcomes (even on the short term), we must know more about the nature of realistic fitness landscapes than we do today. For example, in order to know whether evolution is predominantly taking paths that move upwards in fitness and along neutral ridges, or else entails a significant number of valley crossings, we need to be able to visualize these landscapes: we must determine whether there are peaks in the landscape, where these peaks are located with respect to one another, and whether evolutionary paths can connect them. This is a difficult task because genetic fitness landscapes (as opposed to those based on traits) are high-dimensional, and tools for visualizing such landscapes are lacking. In this contribution, we focus on the predictability of evolution on rugged genetic fitness landscapes, and determine that peaks in such landscapes are highly clustered: high peaks are predominantly close to other high peaks. As a consequence, the valleys separating such peaks are shallow and narrow, such that evolutionary trajectories towards the highest peak in the landscape can be achieved via a series of valley crossings.

Keywords

  • Deleterious Mutation
  • Fitness Landscape
  • Adaptive Landscape
  • Genotype Space
  • Rugged Landscape

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-41888-4_18
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-41888-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adami, C.: Introduction to Artificial Life. TELOS Springer Verlag, New York (1998)

    CrossRef  MATH  Google Scholar 

  2. Adami, C.: Digital genetics: Unraveling the genetic basis of evolution. Nature Reviews Genetics 7(2), 109–118 (2006)

    CrossRef  MathSciNet  Google Scholar 

  3. Barrick, J.E., Yu, D.S., Yoon, S.H., Jeong, H., Oh, T.K., Schneider, D., Lenski, R.E., Kim, J.F.: Genome evolution and adaptation in a long–term experiment with Escherichia coli. Nature 461(7268), 1243–1247 (2009)

    CrossRef  Google Scholar 

  4. Beerenwinkel, N., Pachter, L., Sturmfels, B., Elena, S.F., Lenski, R.E.: Analysis of epistatic interactions and fitness landscapes using a new geometric approach. BMC Evolutionary Biology 7(1), 60:1–60:12 (2007)

    Google Scholar 

  5. Blount, Z.D., Barrick, J.E., Davidson, C.J., Lenski, R.E.: Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489(7417), 513–518 (2012)

    CrossRef  Google Scholar 

  6. Burch, C.L., Chao, L.: Evolvability of an RNA virus is determined by its mutational neighbourhood. Nature 406(6796), 625–628 (2000)

    CrossRef  Google Scholar 

  7. Bush, R.M.: Predicting adaptive evolution. Nature Reviews 2, 387–392 (2001)

    CrossRef  Google Scholar 

  8. Chou, H., Chiu, H., Delaney, N., Segrè, D., Marx, C.J.: Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332, 1190–1192 (2011)

    CrossRef  Google Scholar 

  9. Covacci, A., Rappuoli, R.: Helicobacter pylori: molecular evolution of a bacterial quasi-species. Current Opinion in Microbiology 1, 96–102 (1998)

    CrossRef  Google Scholar 

  10. Doebeli, M., Dieckmann, U.: Evolutionary branching and sympatric speciation caused by different types of ecological interactions. The American Naturalist 156, S77–S101 (2000)

    Google Scholar 

  11. Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Die Naturwissenschaften 58(10), 465–523 (1971)

    CrossRef  Google Scholar 

  12. Eigen, M., McCaskill, J., Schuster, P.: Molecular quasi–species. The Journal of Physical Chemistry 92(24), 6881–6891 (1988)

    CrossRef  Google Scholar 

  13. Elena, S.F., Lenski, R.E.: Test of synergistic interactions among deleterious mutations in bacteria. Nature 390, 395–398 (1997)

    CrossRef  Google Scholar 

  14. Ellison, G.: Basins of attraction, long–run stochastic stability, and the speed of step–by–step evolution. Review of Economic Studies 67(1), 17–45 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Fisher, R.A.: The Genetical Theory of Natural Selection. Oxford University Press, Oxford (1930)

    MATH  Google Scholar 

  16. Franke, J., Klözer, A., de Visser, J.A.G.M., Krug, J.: Evolutionary accessibility of mutational pathways. PLoS Comput. Biol. 7(8), e1002134 (2011)

    Google Scholar 

  17. Gavrilets, S.: Evolution and speciation on holey adaptive landscapes. Trends in Ecology & Evolution 12(8), 307–312 (1997)

    CrossRef  Google Scholar 

  18. Gavrilets, S.: Fitness Landscapes and the Origin of Species. Princeton University Press, Princeton (2004)

    Google Scholar 

  19. Gerrish, P.J., Lenski, R.E.: The fate of competing beneficial mutations in an asexual population. Genetica 102/103, 127–144 (1998)

    Google Scholar 

  20. Hayden, E.J., Wagner, A.: Environmental change exposes beneficial epistatic interactions in a catalytic RNA. Proceedings of the Royal Society B: Biological Sciences 279(1742), 3418–3425 (2012)

    CrossRef  Google Scholar 

  21. Hinkley, T., Martins, J., Chappey, C., Haddad, M., Stawiski, E., Whitcomb, J.M., Petropoulos, C.J., Bonhoeffer, S.: A systems analysis of mutational effects in HIV-1 protease and reverse transcriptase. Nature Genetics 43(5), 487–489 (2011)

    CrossRef  Google Scholar 

  22. Jain, K.: Deterministic and stochastic regimes of asexual evolution on rugged fitness landscapes. Genetics 175, 1275–1288 (2007)

    CrossRef  Google Scholar 

  23. Johnson, T., Barton, N.H.: The effect of deleterious alleles on adaptation in asexual organisms. Genetics 162, 395–411 (2002)

    Google Scholar 

  24. Kaplan, J.: The end of the adaptive landscape metaphor? Biology & Philosophy 23(5), 625–638 (2008)

    CrossRef  Google Scholar 

  25. Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. Journal of Theoretical Biology 128(1), 11–45 (1987)

    CrossRef  MathSciNet  Google Scholar 

  26. Kauffman, S.: The Origins of Order. Oxford University Press, New York (1993)

    Google Scholar 

  27. Kouyos, R.D., Leventhal, G.E., Hinkley, T., Haddad, M., Whitcomb, J.M., Petropoulos, C.J., Bonhoeffer, S.: Exploring the complexity of the HIV-1 fitness landscape. PLoS Genetics 8(3), e1002551 (2012)

    Google Scholar 

  28. Kryazhimskiy, S., Dushoff, J., Bazykin, G.A., Plotkin, J.B.: Prevalence of epistasis in the evolution of influenza a surface proteins. PLoS Genetics 7, e1001301 (2011)

    Google Scholar 

  29. Kvitek, D.J., Sherlock, G.: Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLoS Genetics 7(4), e1002056 (2011)

    Google Scholar 

  30. Khan, A.I., Dinh, D.M., Schneider, D., Lenski, R.E., Cooper, T.F.: Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332, 1193–1196 (2011)

    CrossRef  Google Scholar 

  31. Lunzer, M., Miller, S.P., Felsheim, R., Dean, A.M.: The biochemical architecture of an ancient adaptive landscape. Science 310, 499–501 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  32. Martins, J.Z.R.: The exploration of HIV fitness landscapes. Ph.D. thesis, Universiy of Zurich (2012)

    Google Scholar 

  33. McCandlish, D.: Visualizing fitness landscapes. Evolution 65(6), 1544–1558 (2011)

    CrossRef  Google Scholar 

  34. Mustonen, V., Lässig, M.: From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends in Genetics 25(3), 111–119 (2009)

    CrossRef  Google Scholar 

  35. Nosil, P., Harmon, L.: Ecological explanations for (incomplete) speciation. Trends in Ecology & Evolution 24(3), 145–156 (2009)

    CrossRef  Google Scholar 

  36. Ofria, C., Wilke, C.: Avida: A software platform for research in computational evolutionary biology. Artificial Life 10, 191–229 (2004)

    CrossRef  Google Scholar 

  37. Orr, H.A.: The rate of adaptation in asexuals. Genetics 155, 961–968 (2000)

    Google Scholar 

  38. Østman, B., Hintze, A., Adami, C.: Critical properties of complex fitness landscapes. In: Fellerman, H., Dörr, M., Hanczyc, M.M., Ladegaard Laursen, L., Maurer, S., Merkle, D., Monnard, P.A., Stoy, K., Rasmussen, S. (eds.) Proc. of the ALife XII Conference, pp. 126–132. MIT Press (2010)

    Google Scholar 

  39. Østman, B., Hintze, A., Adami, C.: Impact of epistasis and pleiotropy on evolutionary adaptation. Proceedings of the Royal Society B: Biological Sciences 279, 247–256 (2012)

    CrossRef  Google Scholar 

  40. Pigliucci, M.: Adaptive landscapes, phenotypic space, and the power of metaphors. The Quarterly Review of Biology 83(3), 283–287 (2008)

    CrossRef  Google Scholar 

  41. Pitt, J., Ferre-D’Amare, A.: Rapid construction of empirical RNA fitness landscapes. Science 330, 376–379 (2010)

    CrossRef  Google Scholar 

  42. Richter, H.: Coupled map lattices as spatio–temporal fitness functions: Landscape measures and evolutionary optimization. Physica D 237(2), 167–186 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  43. Schluter, D.: Ecology and the origin of species. Trends in Ecology & Evolution 16(7), 372–380 (2001)

    CrossRef  Google Scholar 

  44. Turelli, M., Barton, N.H., Coyne, J.A.: Theory and speciation. Trends in Ecology & Evolution 16(7), 330–343 (2001)

    CrossRef  Google Scholar 

  45. Weissman, D., Desai, M., Fisher, D.: The rate at which asexual populations cross fitness valleys. Theoretical Population Biology 75, 286–300 (2009)

    CrossRef  MATH  Google Scholar 

  46. Whitlock, M.C., Phillips, P.C., Moore, F.B.G., Tonsor, S.J.: Multiple fitness peaks and epistasis. Annual Review of Ecology and Systematics 26, 601–629 (1995)

    CrossRef  Google Scholar 

  47. Whitlock, M.C.: Founder effects and peak shifts without genetic drift: Adaptive peak shifts occur easily when environments fluctuate slightly. Evolution 51(4), 1044–1048 (1997)

    CrossRef  Google Scholar 

  48. Wielgoss, S., Barrick, J.E., Tenaillon, O., Wiser, M.J., Dittmar, W.J., Cruveiller, S., Chane-Woon-Ming, B., Médigue, C., Lenski, R.E., Schneider, D.: Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proceedings of the National Academy of Sciences 110(1), 222–227 (2013)

    CrossRef  Google Scholar 

  49. Wiles, J., Tonkes, B.: Hyperspace geography: Visualizing fitness landscapes beyond 4D. Artificial Life 12, 211–216 (2006)

    CrossRef  Google Scholar 

  50. Wilke, C.O.: Probability of fixation of an advantageous mutant in a viral quasispecies. Genetics 163, 467–474 (2003)

    Google Scholar 

  51. Wright, S.: Evolution in Mendelian populations. Genetics 16(2), 97–159 (1931)

    Google Scholar 

  52. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones, D. (ed.) Proceedings of the 6th International Congress on Genetics, vol. 1, pp. 356–366 (1932)

    Google Scholar 

  53. Wright, S.: The shifting balance theory and macroevolution. Annual Review of Genetics 16, 1–19 (1982)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørn Østman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Østman, B., Adami, C. (2014). Predicting Evolution and Visualizing High-Dimensional Fitness Landscapes. In: Richter, H., Engelbrecht, A. (eds) Recent Advances in the Theory and Application of Fitness Landscapes. Emergence, Complexity and Computation, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41888-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41888-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41887-7

  • Online ISBN: 978-3-642-41888-4

  • eBook Packages: EngineeringEngineering (R0)