Correlation Analysis of Coupled Fitness Landscapes

Part of the Emergence, Complexity and Computation book series (ECC, volume 6)


In this chapter we present an overview of a statistical analysis to measure and express the correlation structure of fitness landscapes. This correlation analysis is then applied to both static and coupled fitness landscapes as generated by the NK-model and the NKC-model, respectively. An overview of the main results is provided, which shows that this correlation analysis can indeed be applied in a meaningful way to coupled fitness landscapes. This can provide a direct and useful link to the actual search performance of evolutionary algorithms that use a coevolutionary approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press (1996)Google Scholar
  2. 2.
    Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forecasting and Control. Holden Day (1970)Google Scholar
  3. 3.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)Google Scholar
  4. 4.
    Forrest, S., Mitchell, M.: Relative building-block fitness and the building-block hypothesis. In: Whitley, D. (ed.) Foundations of Genetic Algorithms 2, pp. 109–126. Morgan Kaufmann (1993)Google Scholar
  5. 5.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley (1989)Google Scholar
  6. 6.
    Granger, C.W.J., Newbold, P.: Forecasting Economic Time Series, 2nd edn. Academic Press (1986)Google Scholar
  7. 7.
    Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42, 228–234 (1990)CrossRefGoogle Scholar
  8. 8.
    Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press (1992)Google Scholar
  9. 9.
    Hordijk, W.: A measure of landscapes. Evolutionary Computation 4, 335–360 (1996)CrossRefGoogle Scholar
  10. 10.
    Hordijk, W.: Correlation analysis of the synchronizing-CA landscape. Physica D 107, 255–264 (1997)CrossRefGoogle Scholar
  11. 11.
    Hordijk, W., Kauffman, S.A.: Correlation analysis of coupled fitness landscapes. Complexity 10(6), 41–49 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hordijk, W., Stadler, P.F.: Amplitute spectra of fitness landscapes. Advances in Complex Systems 1(1), 39–66 (1998)CrossRefMATHGoogle Scholar
  13. 13.
    Jones, T.: Evolutionary Algorithms, Fitness Landscapes, and Search. PhD thesis, University of New Mexico, Albuquerque, NM, USA (1995)Google Scholar
  14. 14.
    Jones, T.: One operator, one landscape. SFI working paper 95-02-025 (1995)Google Scholar
  15. 15.
    Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Eshelman, L.J. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann (1995)Google Scholar
  16. 16.
    Judge, G.G., Hill, R.C., Griffiths, W.E., Lutkepohl, H., Lee, T.C.: Introduction to the Theory and Practice of Econometrics, 2nd edn. John Wiley & Sons (1988)Google Scholar
  17. 17.
    Juillé, H., Pollack, J.B.: Coevolutionary learning and the design of complex systems. Advances in Complex Systems 2(4), 371–394 (2000)CrossRefGoogle Scholar
  18. 18.
    Kauffman, S.A.: Adaptation on rugged fitness landscapes. In: Stein, D. (ed.) Lectures in the Sciences of Complexity, pp. 527–618. Addison-Wesley (1989)Google Scholar
  19. 19.
    Kauffman, S.A.: The Origins of Order. Oxford University Press (1993)Google Scholar
  20. 20.
    Kauffman, S.A., Johnson, S.: Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches. Journal of Theoretical Biology 149, 467–505 (1991)CrossRefGoogle Scholar
  21. 21.
    Kauffman, S.A., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. Journal of Theoretical Biology 128, 11–45 (1987)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lipsitch, M.: Adaptation on rugged landscapes generated by iterated local interactions of neighboring genes. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 128–135. Morgan Kaufmann (1991)Google Scholar
  23. 23.
    Manderick, B., de Weger, M., Spiessens, P.: The genetic algorithm and the structure of the fitness landscape. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 143–150. Morgan Kaufmann (1991)Google Scholar
  24. 24.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1996)Google Scholar
  25. 25.
    Mitchell, M., Forrest, S., Holland, J.H.: The royal road for genetic algorithms: Fitness landscapes and GA performance. In: Varela, F.J., Bourgine, P. (eds.) Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pp. 245–254. MIT Press (1992)Google Scholar
  26. 26.
    Stadler, P.F.: Towards a theory of landscapes. In: Lopéz-Peña, R., Capovilla, R., García-Pelayo, R., Waelbroeck, H., Zertuche, F. (eds.) Complex Systems and Binary Networks, pp. 77–163. Springer (1995)Google Scholar
  27. 27.
    Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics. Lecture Notes in Physics, pp. 183–204. Springer (2002)Google Scholar
  28. 28.
    Weinberger, E.D.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biological Cybernetics 63, 325–336 (1990)CrossRefMATHGoogle Scholar
  29. 29.
    Werfel, J., Mitchell, M., Crutchfield, J.P.: Resource sharing and coevolution in evolving cellular automata. IEEE Transactions on Evolutionary Computation 4(4), 388–393 (2000)CrossRefGoogle Scholar
  30. 30.
    Wilson, S.W.: GA-easy does not imply steepest-ascent optimizable. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 85–89. Morgan Kaufmann (1991)Google Scholar
  31. 31.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones, D.F. (ed.) Proceedings of the Sixth International Congress on Genetics, vol. 1, pp. 356–366 (1932)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.SmartAnalytiX.comLausanneSwitzerland

Personalised recommendations