Correlation Analysis of Coupled Fitness Landscapes

  • Wim Hordijk
Part of the Emergence, Complexity and Computation book series (ECC, volume 6)


In this chapter we present an overview of a statistical analysis to measure and express the correlation structure of fitness landscapes. This correlation analysis is then applied to both static and coupled fitness landscapes as generated by the NK-model and the NKC-model, respectively. An overview of the main results is provided, which shows that this correlation analysis can indeed be applied in a meaningful way to coupled fitness landscapes. This can provide a direct and useful link to the actual search performance of evolutionary algorithms that use a coevolutionary approach.


Genetic Algorithm Random Walk Correlation Length Correlation Structure Crossover Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press (1996)Google Scholar
  2. 2.
    Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forecasting and Control. Holden Day (1970)Google Scholar
  3. 3.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)Google Scholar
  4. 4.
    Forrest, S., Mitchell, M.: Relative building-block fitness and the building-block hypothesis. In: Whitley, D. (ed.) Foundations of Genetic Algorithms 2, pp. 109–126. Morgan Kaufmann (1993)Google Scholar
  5. 5.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley (1989)Google Scholar
  6. 6.
    Granger, C.W.J., Newbold, P.: Forecasting Economic Time Series, 2nd edn. Academic Press (1986)Google Scholar
  7. 7.
    Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42, 228–234 (1990)CrossRefGoogle Scholar
  8. 8.
    Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press (1992)Google Scholar
  9. 9.
    Hordijk, W.: A measure of landscapes. Evolutionary Computation 4, 335–360 (1996)CrossRefGoogle Scholar
  10. 10.
    Hordijk, W.: Correlation analysis of the synchronizing-CA landscape. Physica D 107, 255–264 (1997)CrossRefGoogle Scholar
  11. 11.
    Hordijk, W., Kauffman, S.A.: Correlation analysis of coupled fitness landscapes. Complexity 10(6), 41–49 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hordijk, W., Stadler, P.F.: Amplitute spectra of fitness landscapes. Advances in Complex Systems 1(1), 39–66 (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Jones, T.: Evolutionary Algorithms, Fitness Landscapes, and Search. PhD thesis, University of New Mexico, Albuquerque, NM, USA (1995)Google Scholar
  14. 14.
    Jones, T.: One operator, one landscape. SFI working paper 95-02-025 (1995)Google Scholar
  15. 15.
    Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Eshelman, L.J. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann (1995)Google Scholar
  16. 16.
    Judge, G.G., Hill, R.C., Griffiths, W.E., Lutkepohl, H., Lee, T.C.: Introduction to the Theory and Practice of Econometrics, 2nd edn. John Wiley & Sons (1988)Google Scholar
  17. 17.
    Juillé, H., Pollack, J.B.: Coevolutionary learning and the design of complex systems. Advances in Complex Systems 2(4), 371–394 (2000)CrossRefGoogle Scholar
  18. 18.
    Kauffman, S.A.: Adaptation on rugged fitness landscapes. In: Stein, D. (ed.) Lectures in the Sciences of Complexity, pp. 527–618. Addison-Wesley (1989)Google Scholar
  19. 19.
    Kauffman, S.A.: The Origins of Order. Oxford University Press (1993)Google Scholar
  20. 20.
    Kauffman, S.A., Johnson, S.: Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches. Journal of Theoretical Biology 149, 467–505 (1991)CrossRefGoogle Scholar
  21. 21.
    Kauffman, S.A., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. Journal of Theoretical Biology 128, 11–45 (1987)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lipsitch, M.: Adaptation on rugged landscapes generated by iterated local interactions of neighboring genes. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 128–135. Morgan Kaufmann (1991)Google Scholar
  23. 23.
    Manderick, B., de Weger, M., Spiessens, P.: The genetic algorithm and the structure of the fitness landscape. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 143–150. Morgan Kaufmann (1991)Google Scholar
  24. 24.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1996)Google Scholar
  25. 25.
    Mitchell, M., Forrest, S., Holland, J.H.: The royal road for genetic algorithms: Fitness landscapes and GA performance. In: Varela, F.J., Bourgine, P. (eds.) Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pp. 245–254. MIT Press (1992)Google Scholar
  26. 26.
    Stadler, P.F.: Towards a theory of landscapes. In: Lopéz-Peña, R., Capovilla, R., García-Pelayo, R., Waelbroeck, H., Zertuche, F. (eds.) Complex Systems and Binary Networks, pp. 77–163. Springer (1995)Google Scholar
  27. 27.
    Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics. Lecture Notes in Physics, pp. 183–204. Springer (2002)Google Scholar
  28. 28.
    Weinberger, E.D.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biological Cybernetics 63, 325–336 (1990)CrossRefzbMATHGoogle Scholar
  29. 29.
    Werfel, J., Mitchell, M., Crutchfield, J.P.: Resource sharing and coevolution in evolving cellular automata. IEEE Transactions on Evolutionary Computation 4(4), 388–393 (2000)CrossRefGoogle Scholar
  30. 30.
    Wilson, S.W.: GA-easy does not imply steepest-ascent optimizable. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 85–89. Morgan Kaufmann (1991)Google Scholar
  31. 31.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones, D.F. (ed.) Proceedings of the Sixth International Congress on Genetics, vol. 1, pp. 356–366 (1932)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.SmartAnalytiX.comLausanneSwitzerland

Personalised recommendations