Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 1413 Accesses

Abstract

Marine structures such as ships and offshore platforms are subjected to complex loading histories and one of the most significant failure modes is fatigue (ISSC, 2009). Fatigue is defined as a process of cycle by cycle accumulation of damage in a material undergoing fluctuating stresses and strains (Almar-Naess, 1985). A significant feature of fatigue is that the load is not large enough to cause immediate failure. Instead, failure occurs after a certain number of load fluctuations have been experienced, i.e. after the accumulated damage has reached a critical level. The propagation of fatigue cracks may eventually compromise the structural integrity and water-tightness of marine structures, so fatigue prevention has been paid great attention by all the stakeholders of marine structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ABS (American Bureau of Shipping) (1992). Guide for the Fatigue Strength Assessment of Tankers. Houston, Texas.

    Google Scholar 

  • Almar-Naess, A. (1985). Fatigue Handbook. Trondheim: Tapir.

    Google Scholar 

  • Basquin, O. H. (1910). “The exponential law of endurance tests”, Proceedings. ASTM, 10(II): 625–630.

    Google Scholar 

  • Bathias, C. (1999). “There is no infinite fatigue life in metallic materials”, Fatigue and Fracture of Engineering Materials and Structures, 22: 559–565.

    Article  Google Scholar 

  • Baumel, A. Jr. & Seeger, T. (1990). Materials Data for Cyclic Loading (Supplement 1). Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Banvillet, A., Palin-Luc, T. & Lasserre, S. (2003). “A volumetric energy based high cycle multiaxial fatigue criterion”, International Journal of Fatigue, 25: 755–769.

    Article  MATH  Google Scholar 

  • Berger, C., Pyttel, B. & Trossmann, T. (2006). “Very high cycle fatigue tests with smooth and notched specimens and screws made of light metal alloys”, International Journal of Fatigue, 28: 1640–1646.

    Article  MATH  Google Scholar 

  • BSI (British Standards Institution) (1980). Code of Practice for Fatigue. BS 5400: Part 10. London.

    Google Scholar 

  • BSI (British Standards Institution) (1993). Code of Practice for Fatigue Design and Assessment of Steel Structures. BS 7608. London.

    Google Scholar 

  • Carpinteri, A. (ed.) (1994). Handbook of Fatigue Crack Propagation in Metallic Structures (Vols. 1 and 2). Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Cashman, G. T. (2010). “A review of competing modes fatigue behavior”, International Journal of Fatigue, 32(3): 492–496.

    Article  Google Scholar 

  • Castillo, E. & Fernandez-Canteli, A. (2006). “A parametric lifetime model for the prediction of high-cycle fatigue based on stress level and amplitude”, Fatigue and Fracture of Engineering Materials and Structures, 29: 1031–1038.

    Article  Google Scholar 

  • Chaboche, J. L. & Lesne, P. M. (1988). “A non-linear continuous fatigue damage model”, Fatigue and Fracture of Engineering Materials and Structures, 11(1): 1–7.

    Article  Google Scholar 

  • Coffin, L. F. & Tavernelli J. F. (1959). “The cyclic straining and fatigue of metals”, Trans of the Metallurgical Society of American Institute of Mechanical Engineers, 215, 794.

    Google Scholar 

  • Cramer, E., Gran, S., Holtsmark, G., Lotsberg, I., Loseth, R., Olaisen, K. & Valsgard, S. (1994). “Fatigue assessment of ship structures”, DNVC Report No. 93–432.

    Google Scholar 

  • CSR of IACS (2006). “IACS common structural rules for tankers and bulk carriers”, the IACS Council, Apr. 1, 2006.

    Google Scholar 

  • Cui, W. C., Wang, F. & Huang, X. P. (2011). “A unified fatigue life prediction method for marine structures”, Marine Structures, 24(2): 153–181.

    Article  Google Scholar 

  • Cui, W. C. (2002). “A state-of-the-art review on fatigue life prediction methods for metal structures”, Journal of Marine Science and Technology, 7: 43–56.

    Article  Google Scholar 

  • Cui, W. C. (2008). “Mechanisms, mathematical models and preventive measures of fatigue cracking (Chapter 5)”, in: Paik, J. K. and Melchers, R. E. (eds.) Condition Assessment of Aged Structures. Cambridge, UK: Woodhead Publishing Ltd.

    Google Scholar 

  • Dattoma, V., Giancane, S., Nobile, R. & Panella, F. W. (2006). “Fatigue life prediction under variable loading based on a new non-linear continuum damage mechanics model”, International Journal of Fatigue, 28: 89–95.

    Article  Google Scholar 

  • De Castro, J. T. P., Meggiolaro, M. A. & de Oliveira Miranda, A. C. (2005). “Singular and non-singular approaches for predicting fatigue crack growth behavior”, International Journal of Fatigue, 27: 1366–1388.

    Article  Google Scholar 

  • Donahue, R. J., Clark, H. M., Atanmo, P., Kumble, R. & McEvily, A. J. (1972). “Crack opening displacement and the rate of fatigue crack growth”, International Journal of Fracture Mechanics, 8: 209–219.

    Article  Google Scholar 

  • Donald, K. & Paris, P. C. (1999). “An evaluation of ΔK eff estimation procedure on 6061-T6 and 2024-T3 aluminum alloys”, International Journal of Fatigue, 21: S47–57.

    Article  Google Scholar 

  • Dowling, N. E. (2007). Mechanical Behavior of Materials-Engineering Methods for Deformation, Fracture, and Fatigue (3rd ed.). Upper Saddle River, New Jersey: Pearson-Prentice Hall.

    Google Scholar 

  • Elber, W. (1970). “Fatigue crack closure under cyclic tension”, Engineering Fracture Mechanics, 2: 37–45.

    Article  Google Scholar 

  • Fatemi, A. & Yang, L. (1998). “Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials”, International Journal of Fatigue, 20(1): 9–34.

    Article  Google Scholar 

  • Forman, R. G., Kearney, V. E. & Engle, R. M. (1967). “Numerical analysis of crack propagation in cyclic-loaded structures”, Journal of Basic Engineering, 89: 459–464.

    Article  Google Scholar 

  • Fricke, W., Cui, W. C., Kierkegaard, H., Kihl, D., Koval, M., Lee, H. L., Mikkola, T., Parmentier, G., Toyosada, M. & Yoon, J. H. (2002). “Comparative fatigue strength assessment of a structural detail in a containership using various approaches of classification societies”, Marine Structures, 15(1): 1–13.

    Article  Google Scholar 

  • Furuya, Y. (2010). “Size effects in gigacycle fatigue of high-strength steel under ultrasonic fatigue testing”, Procedia Engineering, 2: 485–490.

    Article  Google Scholar 

  • Gasiak, G. & Pawliczek, R. (2003). “Application of an energy model for fatigue life prediction of construction steels under bending, torsion and synchronous bending and torsion”, International Journal of Fatigue, 25: 1339–1346.

    Article  Google Scholar 

  • Glen, I. F., Dinovitzer, A., Malik, L., Basu, R. & Yee, R. (2000). “Guide to damage tolerance analysis of marine structures”, SSC-409, NTIS#PB2000-108441.

    Google Scholar 

  • Glinka, G. (1988). “Relations between the strain energy density distribution and elastic-plastic stress-strain field near cracks and notches and fatigue life calculation”, Low Cycle Fatigue, ASTM STP 942, 1002–1047.

    Google Scholar 

  • Hanaki, S., Yamashit, M., Uchida, H. & Zako, M. (2010). “On stochastic evaluation of S-N data based on fatigue strength distribution”, International Journal of Fatigue, 32: 605–609.

    Article  Google Scholar 

  • Hertzberg, R. W., Newton, C. H. & Jaccard, R. (1988). “Crack closure: correlation and confusion”, In: Mechanics of Fatigue Crack Closure. ASTM STP 982. Philadelphia, PA: American Society for Testing and Materials, 139–148.

    Chapter  Google Scholar 

  • Heuler, P. & Klätschke, H. (2005). “Generation and use of standardised load spectra and load-time histories”, International Journal of Fatigue, 27: 974–990.

    Article  MATH  Google Scholar 

  • Hobson, P. D., Brown, M. W. & de los Rios, E. R. (1986). EGF (ESIS) Publication. In: Miller, K. J. & de los Rios, E. R. (eds.) (No.1) The Behavior of Short Fatigue Cracks. London: Mech. Engng, Publications Ltd., 441–459.

    Google Scholar 

  • ISSC Committee III. 2 (2009). “Fatigue and fracture”, in: Jang, C. D. & Hong, H. S. (ed.) Proceedings of the 17th Int. Ship and Offshore Structures Congress, Aug.16–21, 2009, Seoul.

    Google Scholar 

  • Jahed, H. & Varvani-Farahani, A. (2006). “Upper and lower fatigue life limits model using energy-based fatigue properties”, International Journal of Fatigue, 28: 467–473.

    Article  MATH  Google Scholar 

  • Kachanov, L. M. (1986). Introduction to Continuum Damage Mechanics. Dordrecht, the Netherland: Martinus Nijhoff.

    Book  MATH  Google Scholar 

  • Kanninen, M. F. & Popelar, C. H. (1985). Advanced Fracture Mechanics. New York: Oxford University Press.

    MATH  Google Scholar 

  • Kohout, J. & Vechet, S. (1999). “New functions for description of fatigue curves and their advantages”, Fatigue’99, 783–788.

    Google Scholar 

  • Kuawski, D. (2005). “On assumptions associated with ΔK eff and their implications on FCG predictions”, International Journal of Fatigue, 27: 1267–1276.

    Article  Google Scholar 

  • Kujawski, D. (2001a). “Enhanced model of partial crack closure for correlation of R-ratio effects in aluminum alloys”, International Journal of Fatigue, 23: 95–102.

    Article  Google Scholar 

  • Kujawski, D. (2001b). “Correlation of long- and physically short-cracks growth in aluminum alloys”, Engineering Fracture Mechanics, 68: 1357–1369.

    Article  Google Scholar 

  • Kujawski, D. (2001c). “A new (ΔK + K max)0.5 driving force parameter for crack growth in aluminum alloys”, International Journal of Fatigue, 23: 733–740.

    Article  Google Scholar 

  • Kujawski, D. (2001d). “A fatigue crack driving force parameter with load ratio effects”, International Journal of Fatigue, 23: S239–246.

    Article  Google Scholar 

  • Lemaitre, J. & Chaboche, J. L. (1990). Mechanics of Solid Materials. Cambridge, UK: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Laue, S., Bomas, H. & Hoffmann, F. (2006). “Influence of surface condition on the fatigue behaviour of specimens made of a SAE 5115 case-hardened steel”, Fatigue and Fracture of Engineering Materials and Structures, 29: 229–241.

    Article  Google Scholar 

  • Lee, B. L., Kim, K. S. & Nam, K. M. (2003). “Fatigue analysis under variable amplitude loading using an energy parameter”, International Journal of Fatigue, 25: 621–631.

    Article  Google Scholar 

  • Lee, K. S. & Song, J. H. (2006). “Estimation methods for strain-life fatigue properties from hardness”, International Journal of Fatigue, 28: 386–400.

    Article  Google Scholar 

  • Li, W., Sakai, T., Li, Q., Lu, L. T. & Wang, P. (2010). “Reliability evaluation on very high cycle fatigue property of GCr15 bearing steel”, International Journal of Fatigue, 32: 1096–1107.

    Article  Google Scholar 

  • Liu, D. & Thayamballi, A. (1995). “Local cracking in ships—causes, consequences, and control”, in: Proceedings of Symposium on the Prevention of Fracture in Ship Structure, Mar. 30–31, 1995, Washington, D.C.

    Google Scholar 

  • Liu, Y. B., Li, Y. D., Li, S. X., Yang, Z. G., Chen, S. M., Hui, W. J. & Weng, Y. Q. (2010). “Prediction of the S-N curves of high-strength steels in the very high cycle fatigue regime”, International Journal of Fatigue, 32: 1351–1357.

    Article  Google Scholar 

  • Liu, Y. M. & Mahadevan, S. (2007). “A unified multiaxial fatigue damage model for isotropic and anisotropic materials”, International Journal of Fatigue, 29: 347–359.

    Article  MATH  Google Scholar 

  • LR (Lloyd’s Register) (1992). HTS—Something for Nothing? 100A1, Issue 3. London, UK.

    Google Scholar 

  • LR (Lloyd’s Register) (1996). Ship Right—Fatigue Design Assessment Procedure. London, UK.

    Google Scholar 

  • Manson, S. S. (1965). “Fatigue: a complex subject—some simple approximations”, Experimental Mechanics—Journal of the Society for Experimental Stress Analysis, 5(7): 193–226.

    Google Scholar 

  • Manson, S. S. & Hirschberg, M. H. (1964). Fatigue: an Interdisciplinary Approach. Syracuse, New York: Syracuse University Press.

    Google Scholar 

  • Marines, I., Bin, X. & Bathias, C. (2003). “An understanding of very high cycle fatigue of metals”, International Journal of Fatigue, 25: 1101–1107.

    Article  Google Scholar 

  • Maymon, G. (2005a). “A ‘unified’ and a (ΔK + K max)1/2 crack growth models for aluminum 2024-T351”, Internal Journal of Fatigue, 27: 629–638.

    Article  Google Scholar 

  • Maymon, G. (2005b). “Probabilistic crack growth behavior of aluminum 2024-T351 alloy using the ‘unified’ approach”, International Journal of Fatigue, 27: 828–834.

    Article  Google Scholar 

  • McEvily, A. J. & Groeger, J. (1977). “On the threshold for fatigue-crack growth”, 4th International Conference on Fracture, Waterloo: University of Waterloo Press, 2: 1293–1298.

    Google Scholar 

  • McEvily, A. J. & Ishihara, S. (2001). “On the dependence of the rate of fatigue crack growth on the σ n a (2a) parameter”, International Journal of Fatigue, 23: 115–120.

    Article  Google Scholar 

  • McEvily, A. J., Bao, H. & Ishihara, S. (1999). “A modified constitutive relation for fatigue crack growth”, Fatigue’99, 329–336.

    Google Scholar 

  • Meggiolaro, M. A. & Castro, J. T. P. (2004). “Statistical evaluation of strain-life fatigue crack initiation predictions”, International Journal of Fatigue, 26: 463–476.

    Article  Google Scholar 

  • Memon, I. R., Zhang, X. & Cui, D. Y. (2002). “Fatigue life prediction of 3D problems by damage mechanics with two-block loading”, International Journal of Fatigue, 24: 29–37.

    Article  MATH  Google Scholar 

  • Miller, K. J. (1999). “A historical perspective of the important parameters of metal fatigue and problems for the next century”, in: Wu, X. R. & Wang, Z. G. (ed.) Proceedings of the seventh International Fatigue Congress (Fatigue’99). Beijing: Higher Education Press, 15–39.

    Google Scholar 

  • Miner, M. A. (1945). “Cumulative damage in fatigue”, Journal of Applied Mechanics, Trans. ASME, Mech. 67, A159–164.

    Google Scholar 

  • Mitchell, M. R., Socie, D. F. & Caulfield, E. M. (1977). “Fundamentals of modern fatigue analysis”, Fracture Control Program Report No. 26, University of Illinois, 385–410.

    Google Scholar 

  • Muralidharan, U. & Manson, S. S. (1988). “A modified universal slopes equation for estimation of fatigue characteristics of metals”, Journal of Engineering Materials and Technology—Transactions of the ASME, 110: 55–58.

    Article  Google Scholar 

  • Nakajima, M., Tokaji, K., Itoga, H. & Shimizu, T. (2010). “Effect of loading condition on very high cycle fatigue behavior in a high strength steel”, International Journal of Fatigue, 32: 475–480.

    Article  Google Scholar 

  • Navarro, A. & de los Rios, E. R. (1988). “A microstructurally short fatigue crack growth equation”, Fatigue and Fracture of Engineering Materials and Structures, 11(5), 383–396.

    Article  Google Scholar 

  • Newman, Jr., J. C., Irving, P. E., Lin, J. & Le, D. D. (2006). “Crack growth predictions in a complex helicopter component under spectrum loading”, Fatigue and Fracture of Engineering Materials and Structures, 29: 949–958.

    Article  Google Scholar 

  • Noroozi, A. H., Glinka, G. & Lambert, S. (2005). “A two parameter driving force for fatigue crack growth analysis”, International Journal of Fatigue, 27: 1277–1296.

    Article  MATH  Google Scholar 

  • Ong, J. H. (1993a). “An evaluation of existing methods for the prediction of axial fatigue life from tensile data”, International Journal of Fatigue, 15(1): 13–19.

    Article  Google Scholar 

  • Ong, J. H. (1993b). “An improved technique for the prediction of axial fatigue life from tensile data”, International Journal of Fatigue, 15(3): 213–219.

    Article  Google Scholar 

  • Paik, J. K. & Thayamballi, A. K. (2003). Ultimate Limit State Design of Steel-Plated Structures. Chichester: John Wiley & Sons.

    Google Scholar 

  • Paik, J. K., Brennan, F. P., Carlsen, C. A., Daley, C., Garbatov, Y., Ivanov, L., Rizzo, C. M., Simonsen, B. C., Yamamoto, N. & Zhuang, H. Z. (2006). “Report of specialist committee V.6: condition assessment of aged ships”, in: Frieze, P. A. & Shenoi, R. A. (eds.) Proceedings of the 16th International Ship and Offshore Structures Congress, Aug. 20–25, Southampton, UK, 2: 269–320.

    Google Scholar 

  • Palin-Luc, T. & Lasserre, S. (1998). “An energy based criterion for high cycle multiaxial fatigue”, European Journal of Mechanis, A/Solids, 17(2): 237–251.

    Article  MATH  Google Scholar 

  • Palmgren, A. (1924). “Die Lebensdauer von Kugellagern (Durability of ball bearings)”, ZDVDI, 68(14): 339.

    Google Scholar 

  • Pan, W. F., Hung, C. Y. & Chen, L. L. (1999). “Fatigue life estimation under multiaxial loadings”, International Journal of Fatigue, 21: 3–10.

    Article  Google Scholar 

  • Paris, P. C. & Erdogan, F. (1963). “A critical analysis of crack propagation laws”, Journal of Basic Engineering, 85: 528–534.

    Article  Google Scholar 

  • Paris, P. C. Gomez, M. P. & Anderson, W. P. (1961). “A rational analytical theory of fatigue”, The Trend in Engineering, 13: 9–14.

    Google Scholar 

  • Park, J. H. & Song, J. H. (1995). “Detailed evaluation of methods for estimation of fatigue properties”, International Journal of Fatigue, 17(5): 365–373.

    Article  MathSciNet  Google Scholar 

  • Perez, N. (2004). Fracture Mechanics. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Pyttel, B., Schwerdt, D. & Berger, C. (2011). “Very high cycle fatigue—is there a fatigue limit?” International Journal of Fatigue, 33: 49–58.

    Article  Google Scholar 

  • Pyttel, B., Schwerdt, D. & Berger, C. (2010). “Fatigue strength and failure mechanisms in the VHCF-region for quenched and tempered steel 42CrMoS4 and consequences to fatigue design”, Procedia Engineering, 2: 1327–1336.

    Article  Google Scholar 

  • Qian, G. A., Hong, Y. S. & Zhou, C. G. (2010). “Investigation of high cycle and Very-High-Cycle Fatigue behaviors for a structural steel with smooth and notched specimens”, Engineering Failure Analysis, 17: 1517–1525.

    Article  Google Scholar 

  • Qian, Y. & Cui, W. C. (2010). “An overview on experimental investigation on variable amplitude fatigue crack growth rule”, Journal of Ship Mechanics, 14(5): 556–565.

    Google Scholar 

  • Ravi Chandran, K. S., Chang, P. & Cashman, G. T. (2010). “Competing failure modes and complex S-N curves in fatigue of structural materials”, International Journal of Fatigue, 32(3): 482–491.

    Article  Google Scholar 

  • Roessle, M. L. & Fatemi, A. (2000). “Strain-controlled fatigue properties of steels and some simple approximations”, International Journal of Fatigue, 22: 495–511.

    Article  Google Scholar 

  • Sadananda, K., Vasudevan, A. K. & Kang, I. W. (2003). “Effect of superimposed monotonic fracture modes on the ΔK and ΔK max parameters of fatigue crack propagation”, Acta Materialia, 51: 3399–3414.

    Article  Google Scholar 

  • Sakai, T., Takeda, M., Shiosawa, K., Ochi, Y., Nakajima, M., Nakamura, T. & Oguma, N. (1999). “Experimental evidence of duplex S-N characteristics in wide life region for high strength steels”, Fatigue’99, 573–578.

    Google Scholar 

  • Schütz, W. (1996). “A history of fatigue”, Engineering Fracture Mechanics, 54(2): 263–300.

    Article  Google Scholar 

  • Skaar, K. T., Valsgard, S., Kohler, P. E. & Murer, C. (1987). “How low can steel weight go with safety and economy?” In: Proceedings 3rd International Conference on Practical Design of Ships and Mobile Offshore Units, PRADS’87, Jun. 22–26, 1987, Trondheim, Norway.

    Google Scholar 

  • Skorupa, M. (1998). “Load interaction effects during fatigue crack growth under variable amplitude loading—a literature review (Part I: Empirical trends)”, Fatigue and Fracture of Engineering Materials and Structures, 21(8): 987–1006.

    Article  Google Scholar 

  • Skorupa, M. (1999). “Load interaction effects during fatigue crack growth under variable amplitude loading—a literature review (Part II: Qualitative interpretation)”, Fatigue and Fracture of Engineering Materials and Structures, 22(10): 905–926.

    Article  Google Scholar 

  • Smith, K. N., Watson, P. & Topper, T. H. (1970). “A stress-strain function for the fatigue of metals”, J. Mater., 5(4): 767–778.

    Google Scholar 

  • Stoychev, S. & Kujawski, D. (2005). “Analysis of crack propagation using ΔK and K max”, International Journal of Fatigue, 27: 1425–1431.

    Article  Google Scholar 

  • UKDE (1984). U. K. Department of Energy, “Offshore installations: guidance on design and construction”, HMSO, Apr. 1984, London.

    Google Scholar 

  • Vasudevan, A. K., Sadananda, K. & Glinka, G. (2001). “Critical parameters for fatigue damage”, International Journal of Fatigue, 23: S39–53.

    Article  Google Scholar 

  • Vasudevan, A. K., Sadananda, K. & Louat, N. (1994). “A review of crack closure, fatigue crack threshold and related phenomena”, Materials Science and Engineering, A188: 1–22.

    Article  Google Scholar 

  • Wang, X. S., Kawagoishi, N., Yu, S. W., Nisitani, H. & Goto, M. (1999). “Prediction of fatigue life of carbon steel using only the tensile strength”, Fatigue’99, 845–850.

    Google Scholar 

  • Wang, Q. Y., Li, T. & Zeng, X. G. (2010). “Gigacycle fatigue behavior of high strength aluminum alloys”, Procedia Engineering, 2: 65–70.

    Article  Google Scholar 

  • Wästberg, S., Brennan, D., Chen, R., Hodgson, T., Kihl, D., Litonov, O., Mahérault-Mougin, S., Osawa, N., Paetzold, H., Shin, C.-Ho, Tedeschi, R. & Wang, X. (2006). “Fatigue and fracture”, TC III.2 Report. In: Frieze, P. A. & Shenoi, R. A. (eds.), Proceedings of 16th International Ship and Offshore Structures Congress, Aug. 20–25, Southampton, UK, 1, 459–541.

    Google Scholar 

  • Weibull W. (1951). “A statistical distribution function of wide applicability”, Journal of Applied Mechanics, 293–297.

    Google Scholar 

  • Yang, L. & Fatemi, A. (1998). “Cumulative fatigue damage mechanisms and quantifying parameters: a literature review”, Journal of Testing and Evaluation, 26(2): 89–100.

    Article  Google Scholar 

  • Ye, D. Y., Matsuoka, S., Suzuki, N. & Maeda, Y. (2004). “Further investigation of Neuber’s rule and the equivalent strain energy density method”, International Journal of Fatigue, 26: 447–455.

    Article  MATH  Google Scholar 

  • Zhang, J. Z., He, X. D. & Du, S. Y. (2005). “Analyses of the fatigue crack propagation process and stress ratio effects using the two parameter method”, International Journal of Fatigue, 27: 1314–1318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cui, W., Huang, X., Wang, F. (2014). Introduction. In: Towards a Unified Fatigue Life Prediction Method for Marine Structures. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41831-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41831-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41830-3

  • Online ISBN: 978-3-642-41831-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics