Improving Gender Classification Accuracy in the Wild

  • Modesto Castrillón-Santana
  • Javier Lorenzo-Navarro
  • Enrique Ramón-Balmaseda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)

Abstract

In this paper, we focus on gender recognition in challenging large scale scenarios. Firstly, we review the literature results achieved for the problem in large datasets, and select the currently hardest dataset: The Images of Groups. Secondly, we study the extraction of features from the face and its local context to improve the recognition accuracy. Different descriptors, resolutions and classifiers are studied, overcoming previous literature results, reaching an accuracy of 89.8%.

Keywords

gender recognition local context head and shoulders LBP HOG in the wild 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(12) (December 2006)Google Scholar
  2. 2.
    Alexandre, L.A.: Gender recognition: A multiscale decision fusion approach. Pattern Recognition Letters 31(11), 1422–1427 (2010)CrossRefGoogle Scholar
  3. 3.
    Bekios-Calfa, J., Buenaposada, J.M., Baumela, L.: Revisiting linear discriminant techniques in gender recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(4), 858–864 (2011)CrossRefGoogle Scholar
  4. 4.
    Bourdev, L., Maji, S., Malik, J.: Describing people: A poselet-based approach to attribute classification. In: International Conference on Computer Vision (2011)Google Scholar
  5. 5.
    Chu, W.-S., Huang, C.-R., Chen, C.-S.: Identifying gender from unaligned facial images by set classification. In: International Conference on Pattern Recognition (ICPR), Istanbul, Turkey (2010)Google Scholar
  6. 6.
    Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)Google Scholar
  7. 7.
    Dago-Casas, P., González-Jiménez, D., Long-Yu, L., Alba-Castro, J.L.: Single- and cross- database benchmarks for gender classification under unconstrained settings. In: Proc. First IEEE International Workshop on Benchmarking Facial Image Analysis Technologies (2011)Google Scholar
  8. 8.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Schmid, C., Soatto, S., Tomasi, C. (eds.) International Conference on Computer Vision & Pattern Recognition, vol. 2, pp. 886–893. INRIA Rhône-Alpes, ZIRST-655, av. de l’Europe, Montbonnot-38334 (June 2005)Google Scholar
  9. 9.
    Déniz, O., Bueno, G., Salido, J., De La Torre, F.: Face recognition using histograms of oriented gradients. Pattern Recognition Letters 32(12), 1598–1603 (2011)CrossRefGoogle Scholar
  10. 10.
    Gallagher, A., Chen, T.: Understanding images of groups of people. In: Proc. CVPR (2009)Google Scholar
  11. 11.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, Univ, of Massachusetts, Amherst (October 2007)Google Scholar
  12. 12.
    Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Describable visual attributes for face verification and image search. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) (October 2011)Google Scholar
  13. 13.
    Li, B., Lian, X.-C., Lu, B.-L.: Gender classification by combining clothing, hair and facial component classifiers. Neurocomputing 76(1), 18–27 (2012)CrossRefGoogle Scholar
  14. 14.
    Mäkinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(3), 541–547 (2008)CrossRefGoogle Scholar
  15. 15.
    Marcel, S., Rodríguez, Y., Heusch, G.: On the recent use of local binary patterns for face authentication. International Journal of Image and Video Preprocessing, Special Issue on Facial Image Processing (2007)Google Scholar
  16. 16.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  17. 17.
    Ramón-Balmaseda, E., Lorenzo-Navarro, J., Castrillón-Santana, M.: Gender classification in large databases. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 74–81. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Ricanek Jr., K., Tesafaye, T.: MORPH: A longitudinal image database of normal adult age-progression. In: IEEE 7th International Conference on Automatic Face and Gesture Recognition, Southampton, UK, pp. 341–345 (April 2006)Google Scholar
  19. 19.
    Shan, C.: Learning local binary patterns for gender classification on realworld face images. Pattern Recognition Letters 33, 431–437 (2012)CrossRefGoogle Scholar
  20. 20.
    Tapia, J.E., Perez, C.A.: Gender classification based on fusion of different spatial scale features selected by mutual information from histogram of lbp, intensity and shape. IEEE Transactions on Information Forensics and Security 8(3), 488–499 (2013)CrossRefGoogle Scholar
  21. 21.
    Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods on the wild. In: Faces in Real-Life Images Workshop in ECCV (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Modesto Castrillón-Santana
    • 1
  • Javier Lorenzo-Navarro
    • 1
  • Enrique Ramón-Balmaseda
    • 1
  1. 1.SIANI Universidad de Las Palmas de Gran CanariaSpain

Personalised recommendations