Skip to main content

Die Struktur des Zufalls als Motor der Veränderung

  • 4011 Accesses

Zusammenfassung

Im vorhergehenden Kapitel habe ich mich – hoffentlich erfolgreich – bemüht, verborgene Absichten als Triebkräfte der Evolution beim Leser zu diskreditieren. Mein Argument war Ockhams Rasiermesser: Alle Einflüsse, welche nicht zweifelsfrei vorhanden sind, sollten aus der wissenschaftlichen Erklärung eines natürlichen Phänomens herausgehalten werden. Wie verhält es sich in dieser Hinsicht mit der häufig angeführten Zufälligkeit evolutionärer Veränderungen? Ist die Behauptung, Mutationen seien grundsätzlich zufälliger Natur, gleichbedeutend mit der Einführung eines zusätzlichen Faktors der Evolution, eben des Zufalls?

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, et al (2013) Hybridization and speciation. J Evol Biol, 26(2):229–246

    CrossRef  PubMed  CAS  Google Scholar 

  • Ahmadinejad N, Dagan T, Gruenheit N, Martin W, Gabaldon T (2010) Evolution of spliceosomal introns following endosymbiotic gene transfer. BMC Evol Biol, 10(1):57

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Arlt MF, Wilson TE, Glover TW (2012) Replication stress and mechanisms of CNV formation. Curr Opin Genet Dev, 22(3):204–210

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Bauer J (2010) Das kooperative Gen. Heyne, München

    Google Scholar 

  • chs/dpa (2012) 1,2 Millionen Opfer pro Jahr: Malaria tötet viel mehr Menschen als angenommen. Spiegel Online

    Google Scholar 

  • Consortium EP, Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414):57–74

    CrossRef  CAS  Google Scholar 

  • Dunning Hotopp JC (2011) Horizontal gene transfer between bacteria and animals. Trends Genet, 27(4):157–163

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Eichinger L, Pachebat JA, Glöckner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, et al (2005) The genome of the social amoeba Dictyostelium discoideum. Nature, 435(7038):43–57

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Emerson JJ, Cardoso-Moreira M, Borevitz JO, Long M (2008) Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science, 320(5883):1629–1631

    CrossRef  PubMed  CAS  Google Scholar 

  • Gilbert C, Schaack S, Pace JK, Brindley PJ, Feschotte C (2010) A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature, 464(7293):1347–1350

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Gilson PR, McFadden GI (2002) Jam packed genomes – a preliminary, comparative analysis of nucleomorphs. Genetica, 115(1):13–28

    CrossRef  PubMed  CAS  Google Scholar 

  • Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science, 320(5880):1210–1213

    CrossRef  PubMed  CAS  Google Scholar 

  • Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet, 6(2):e1000834

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Hotopp JCD, Clark ME, Oliveira DCSG, Foster JM, Fischer P, Torres MCM, Giebel JD, Kumar N, Ishmael N, Wang S, et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science, 317(5845):1753–1756

    CrossRef  CAS  Google Scholar 

  • Huang CY, Grünheit N, Ahmadinejad N, Timmis JN, Martin W (2005) Mutational decay and age of chloroplast and mitochondrial genomes transferred recently to angiosperm nuclear chromosomes. Plant Physiology, 138(3):1723–1733

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Iskow RC, Gokcumen O, Lee C (2012) Exploring the role of copy number variants in human adaptation. Trends Genet, 28(6):245–257

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Keeling PJ, Burger G, Durnford D, Lang B, Lee R, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol, 20(12):670–676

    CrossRef  PubMed  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet, 9(8):605–618

    CrossRef  PubMed  CAS  Google Scholar 

  • Keightley PD, Trivedi U, Thomson M, Oliver F, Kumar S, Blaxter ML (2009) Analysis of the genome sequences of three Drosophila melanogaster spontaneous mutation accumulation lines. Genome Res, 19(7):1195–1201

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Kenigsberg E, Tanay A (2013) Drosophila functional elements are embedded in structurally constrained sequences. PLoS Genet, 9(5):e1003512

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science, 290(5494):1151–1155

    CrossRef  PubMed  CAS  Google Scholar 

  • Martin W (1999) Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. Bioessays, 21(2):99–104

    CrossRef  PubMed  CAS  Google Scholar 

  • Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A, Yoon SC, Ye K, Cheetham RK, et al (2011) Mapping copy number variation by population-scale genome sequencing. Nature, 470(7332):59–65

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, Werner J, Villanea FA, Mountain JL, Misra R, et al (2007) Diet and the evolution of human amylase gene copy number variation. Nat Genet, 39(10):1256–1260

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Petrov DA, Hartl DL (1999) Patterns of nucleotide substitution in Drosophila and mammalian genomes. Proc Natl Acad Sci USA, 96(4):1475–1479

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Popa O, Dagan T (2011) Trends and barriers to lateral gene transfer in prokaryotes. Curr Opin Microbiol, 14(5):615–623

    CrossRef  PubMed  CAS  Google Scholar 

  • Ryan F (2010) Virolution. Die Macht der Viren in der Evolution, Spektrum, Heidelberg

    Google Scholar 

  • Schönknecht G, Chen WH, Ternes CM, Barbier GG, Shrestha RP, Stanke M, Bräutigam A, Baker BJ, Banfield JF, Garavito RM, et al (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science, 339(6124):1207–1210

    CrossRef  PubMed  CAS  Google Scholar 

  • Shapiro JA (2011) Evolution. A view from the 21st century, FT Press, Upper Saddle River

    Google Scholar 

  • Stegemann S, Keuthe M, Greiner S, Bock R (2012) Horizontal transfer of chloroplast genomes between plant species. Proc Natl Acad Sci USA, 109(7):2434–2438

    CrossRef  PubMed Central  PubMed  Google Scholar 

  • Surridge A (2003) Evolution and selection of trichromatic vision in primates. Trends Ecol Evol, 18(4):198–205

    CrossRef  Google Scholar 

  • Wang J, Fan HC, Behr B, Quake SR (2012) Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell, 150(2):402–412

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Wiedenbeck J, Cohan FM (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev, 35(5):957–976

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veiko Krauß Dr. .

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krauß, V. (2014). Die Struktur des Zufalls als Motor der Veränderung. In: Gene, Zufall, Selektion. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41755-9_7

Download citation