Empirical Analysis on the Users’ Reply Behaviors of Online Forums

  • Guirong Chen
  • Wandong Cai
  • Aiwang Chen
  • Huijie Xu
  • Rong Wang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 279)

Abstract

Quantitative understanding of human behaviors is of huge significance to uncover the origins of many social and economic phenomena. This paper focuses on users’ reply behaviors of online forums. The statistical results show that users’ one-day activities and one-post interests both follow heavy-tailed distribution not only on population level but also on individual level. Specifically, we found that users’ one-day activities obey a power law distribution with exponential cutoff and users’ one-post interests obey a power law distribution. Further, we observe a positive correlation between users’ total activities and the power law exponents of one-day activities. In addition, we study the content scatter degree of users’ one-day replies and the time scatter degree of users’ one-post replies, and find some suspicious user behaviors, which provide new clues to the detection of cyber-space hype and network water army.

Keywords

Empirical Analysis Reply Behavior Heavy-tailed Distribution BBS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barabási, A.L.: The Origin of Bursts and Heavy Tails in Human Dynamics. J. Nature 435, 207–211 (2005)CrossRefGoogle Scholar
  2. 2.
    Zhou, T., Kiet, H.A.T., Kim, B.J., et al.: Role of Activity in Human Dynamics. J. EPL (Europhysics Letters) 82, 28002-p1–28002-p5 (2008)Google Scholar
  3. 3.
    Radicchi, F.: Human Activity in the Web. J. Physical Review E 82, 026118-1–026118-8 (2009)Google Scholar
  4. 4.
    Guo, J.L., Fan, C., Guo, Z.H.: Weblog Patterns and Human Dynamics with Decreasing Interest. J. The European Physical Journal B 81, 341–344 (2011)CrossRefGoogle Scholar
  5. 5.
    Wei, H., Xiao-Pu, H., Tao, Z., et al.: Heavy-tailed Statistics in Short-message Communication. J. Chinese Physics Letters 26, 028902-1–028902-3 (2009)Google Scholar
  6. 6.
    Zhi-Dan, Z., Hu, X.I.A., Ming-Sheng, S., et al.: Empirical Analysis on the Human Dynamics of a Large-scale Short Message Communication System. J. Chinese Physics Letters 28, 068901-1–068901-4 (2011)Google Scholar
  7. 7.
    Fan, C., Guo, J.L., Zha, Y.L.: Fractal Analysis on Human Dynamics of Library Loans. J. Physica A: Statistical Mechanics and its Applications 391, 6617–6625 (2012)CrossRefGoogle Scholar
  8. 8.
    Jiang, Z.Q., Xie, W.J., Li, M.X., et al.: Calling Patterns in Human Communication Dynamics. J. Proceedings of the National Academy of Sciences 110, 1600–1605 (2013)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Yu, J., Hu, Y., Yu, M., et al.: Analyzing Netizens’ View and Reply Behaviors on the Forum. J. Physica A: Statistical Mechanics and its Applications 389, 3267–3273 (2010)CrossRefGoogle Scholar
  11. 11.
    Ding, F., Liu, Y., Shen, B., et al.: Modeling Reading and Replying Activities in a BBS Social Network. J. Journal of Electronics (China) 8, 300–306 (2010)Google Scholar
  12. 12.
    Si, X.M., Liu, Y.: Empirical Analysis of the Interpersonal Interacting Behavior in Virtual Community. J. Acta. Phys. Sin. 60, 073908-1–073908-8 (2011)Google Scholar
  13. 13.
    Xiong, F., Liu, Y.: Empirical Analysis and Modeling of Users’ Topic Interests in Online Forums. J. PLoS ONE 7, e50912-1– e50912-7 (2012)Google Scholar
  14. 14.
    Peng, D., Cai, W.D.: The Web Forum Crawling Technology and System Implementation. J. Computer Engineering & Science 33, 157–160 (2011) (in Chinese)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Guirong Chen
    • 1
  • Wandong Cai
    • 1
  • Aiwang Chen
    • 2
  • Huijie Xu
    • 1
  • Rong Wang
    • 2
  1. 1.School of Computer ScienceNorthwestern Polytechnical UniversityXi,anPeople’s Republic of China
  2. 2.School of Information and NavigationAir Force Engineering University of PLXi,anPeople’s Republic of China

Personalised recommendations