Advertisement

MAP: An Optimized Energy-Efficient Cluster Header Selection Technique for Wireless Sensor Networks

  • Kanokporn Udompongsuk
  • Chakchai So-In
  • Comdet Phaudphut
  • Kanokmon Rujirakul
  • Chitsutha Soomlek
  • Boonsup Waikham
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 279)

Abstract

Recent advances in wireless sensor networks have led to feasibility in implementing a variety of reliable and distributed monitoring and controlling systems used in several areas including environment, healthcare, civil, and military applications. The introduction to novel protocols and their improvements, especially for energy consumption awareness, were due to the major limitations of power-aware tiny sensor nodes. To utilize an overall energy consumption prolonging system lifetime, clustering is one of the promising approaches. By grouping sensors together, the sensor communicates only to its cluster head before gathered, and then forwarded to a base station. In this paper, we evaluate this issue, and then propose an optimization over a well-known hierarchical routing protocol, LEACH, by considering Moving energy window Average and selection Probability (MAP), resulting in an overall energy usage enhancement.

Keywords

DCHS Deterministic Cluster-Head Selection Hybrid-LEACH K-LEACH LEACH N-LEACH T-LEACH W-LEACH Low Energy Adaptive Clustering Hierarchy MAP Wireless Sensor Networks WSNs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)CrossRefGoogle Scholar
  2. 2.
    Pantazis, N.A., Nikolidakis, S.A., Vergados, D.D.: Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey. IEEE Commun. Survey & Tutorials 15(2), 551–591 (2012)CrossRefGoogle Scholar
  3. 3.
    Al-Karaki, J.N., Kamal, A.E.: Routing Techniques in wireless sensor network: a survey. IEEE Wireless Commun. 11(6), 6–28 (2004)Google Scholar
  4. 4.
    Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An Application-Specific Protocol Architecture for Wireless Microsensor Networks. IEEE Trans. on Wireless Commun. 1(4), 660–670 (2002)CrossRefGoogle Scholar
  5. 5.
    Tyagi, S., Kumar, N.: A systematic review on clustering and routing techniques based upon LEACH protocol for wireless sensor networks. J. of Network and Computer Applications 36(2), 623–645 (2013)CrossRefGoogle Scholar
  6. 6.
    So-In, C., Udompongsuk, K., Phudphut, C., Rujirakul, K., Khunboa, C.: Performance Evaluation of LEACH on Cluster Head Selection Techniques in Wireless Sensor Networks. In: Meesad, P., Unger, H., Boonkrong, S. (eds.) IC2IT2013. AISC, vol. 209, pp. 51–61. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Thein, M.C.M., Thein, T.: An Energy Efficient Cluster-Head Selection for Wireless Sensor Networks. In: Inter. Conf. on Intelligent Systems, Modeling and Simulation, pp. 287–291. IEEE Press, UK (2010)Google Scholar
  8. 8.
    Hou, R., Ren, W., Zhang, Y.: A wireless sensor network clustering algorithm based on energy and distance. In: Inter. Workshop on Computer Science and Engineering, pp. 439–442. IEEE Press, USA (2009)Google Scholar
  9. 9.
    Azim, A., Mohammad, M.I.: Hybrid LEACH: A Relay Node Based Low Energy Adaptive Clustering Hierarchy for Wireless Sensor Networks. In: Inter. Conf. on Commun., pp. 911–916. IEEE Press, Kuala Lumpur (2009)Google Scholar
  10. 10.
    Li, Y., Ding, L., Liu, F.: The Improvement of LEACH Protocol in WSN. In: Inter. Conf. on Computer Science and Network Technology, pp. 1345–1348. IEEE Press, Harbin (2011)Google Scholar
  11. 11.
    Handy, M.J., Haase, M., Timmermann, D.: Low Energy Adaptive Clustering Hierarchy with Deterministic Cluster-Head Selection. In: IEEE Conf. on Mobile and Wireless Commun. Networks, pp. 368–372. IEEE Press, USA (2002)Google Scholar
  12. 12.
    Makridakis, S., Wheelwright, S.C.: Adaptive Filtering: An Integrated Autoregressive/Moving Average Filter for Time Series Forecasting. Opl Res. Q., Pergamon Press 28(2), 337–425 (1977)Google Scholar
  13. 13.
    Hyndman, R.J., Athanasopulos, G.: Forecasting Methods and Applications (2012), www.otexts.com/fpp/

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kanokporn Udompongsuk
    • 1
  • Chakchai So-In
    • 1
  • Comdet Phaudphut
    • 1
  • Kanokmon Rujirakul
    • 1
  • Chitsutha Soomlek
    • 1
  • Boonsup Waikham
    • 1
  1. 1.Department of Computer Science, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand

Personalised recommendations