The Role of Graph Theory in Solving Euclidean Shortest Path Problems in 2D and 3D

Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 279)

Abstract

Determining Euclidean shortest paths between two points in a domain is a fundamental problem in computing geometry and has many applications in GIS, robotics, computer graphics, CAD, etc. To date, solving Euclidean shortest path problems inside simple polygons has usually relied on triangulation of the entire polygons and graph theory. The question: "Can one devise a simple O(n) time algorithm for computing the shortest path between two points in a simple polygon (with n vertices), without resorting to a (complicated) linear-time triangulation algorithm?" raised by J. S.B. Mitchell in Handbook of Computational Geometry (J. Sack and J. Urrutia, eds., Elsevier Science B.V., 2000), is still open. The aim of this paper is to show that in 2D, convexity contributes to the design of an efficient algorithm for finding the approximate shortest path between two points inside a simple polygon without triangulation of the entire polygons or graph theory. Conversely, in 3D, we show that graph tools (e.g., Dijkstra’s algorithm for solving shortest path problems on graphs) are crucial to find an Euclidean shortest path between two points on the surface of a convex polytope.

Keywords

Approximate algorithm convex hull discrete geometry Dijkstra’s algorithm extreme point Euclidean shortest path graph theory shortest path on graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, P.T., Hai, N.N., Hoai, T.V.: The role of convexity for solving some shortest path problems in plane without triangulation. In: International Conference on Mathematical Sciences and Statistics, Kuala Lump, Malaysia, February 5-7. AIP Conference Proceedings, American Institute of Physics, NY (2013)Google Scholar
  2. 2.
    An, P.T., Hai, N.N., Hoai, T.V.: Direct multiple shooting method for solving approximate shortest path problems. Journal of Computational and Applied Mathematics 244, 67–76 (2013)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    An, P.T., Hai, N.N., Hoai, T.V., Trang, L.H.: On the performance of trangulation-based multiple shooting method for 2D shortest path problems. In: International Conference on Advanced Computing and Applications (ACOMP 2013), Ho Chi Minh City, Vietnam, October 23-25 (2013)Google Scholar
  4. 4.
    An, P.T.: Reachable grasps on a polygon of a robot arm: finding convex ropes without triangulation. Journal of Robotics and Automation 25(4), 304–310 (2010)Google Scholar
  5. 5.
    An, P.T.: Method of orienting curves for determining the convex hull of a finite set of points in the plane. Optimization 59(2), 175–179 (2010)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    An, P.T., Hoai, T.V.: Incremental convex hull as an orientation to solving the shortest path problem. In: IEEE Proc. 3rd Int. Conf. Comp. & Auto. Eng., Chongqing, China, January 21-23 (2011)Google Scholar
  7. 7.
    Bock, H.G., Plitt, K.J.: A multiple shooting algorithm for direct solution optimal control problems. In: Proceedings of the 9th IFAC World Congress, Budapest, pp. 243–247. Pergamon Press (1984)Google Scholar
  8. 8.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Lee, D.T., Preparata, F.P.: Euclidean shortest paths in the presence of rectilinear barriers. Networks 14, 393–410 (1984)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Li, F., Klette, R.: Euclidean Shortest Paths: Exact or Approximate Algorithms. Springer (2011)Google Scholar
  11. 11.
    Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier Science B. V. (2000)Google Scholar
  12. 12.
    Peshkin, M.A., Sanderson, A.C.: Reachable grasps on a polygon: the convex rope algorithm. IEEE Journal on Robotics and Automation 2(1), 53–58 (1986)CrossRefGoogle Scholar
  13. 13.
    Phu, H.X.: Ein konstruktives Loesungsverfahren fuer das Problem des Inpolygons kleinsten Umfangs von J. Steiner. Optimization 18, 349–359 (1987)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press (1998)Google Scholar
  15. 15.
    Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear time. J. ACM 46(3), 362–394 (1999)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Phan Thanh An
    • 1
    • 2
  • Nguyen Ngoc Hai
    • 3
  • Tran Van Hoai
    • 4
  1. 1.Institute of MathematicsHanoiVietnam
  2. 2.CEMATInstituto Superior TecnicoLisbonPortugal
  3. 3.International University, Vietnam National UniversityHo Chi Minh CityVietnam
  4. 4.Faculty of Computer Science and EngineeringHCMC University of TechnologyHo Chi Minh CityVietnam

Personalised recommendations