Intelligent Inference System for Smart Electronic Acupuncture

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 279)

Abstract

In this paper, we proposed the system that diagnoses a patient optimally considering the patient’s condition using intelligent fuzzy technique. We designed the system to respond to the various patterns and to sense the situation which potential difference is changed according to the patient’s painful part simultaneously. It contains the function that a patient can search the exact point of electronic acupuncture and check on optimal strength and time of electronic acupuncture considering the patient’s body conditions. The system includes the hardware to provide protection function for safety and to support the multimode function of electronic acupuncture through change of control mode.

Keywords

inference fuzzy rules acupuncture diagnose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haider, A.W., Larson, M.G., Franklin, S.S., Levy, D.: Systolic Pressure, Diastolic Blood Pressure, and Pulse Pressure as Predictors of Risk for Congestive Heart Failure in the Framingham Heart Study. Ann. Inter. Medi. 138, 10–17 (2006)CrossRefGoogle Scholar
  2. 2.
    Shaltis, P.A., Reisner, A.T., Asada, H.H.: Cuffless Blood Pressure Monitoring Using Hydrostatic Pressure Changes. IEEE Trans. Biomed. Eng. 55, 1775–1777 (2008)CrossRefGoogle Scholar
  3. 3.
    Lee, Y.J., Lee, J., Lee, H.J., Yoo, H.H., Choi, E.J., Kim, J.Y.: Study on the characteristics of blood vessel pulse area using ultrasonic. Korea Institute of Oriental Medicine Researches 13(3), 111–119 (2007)Google Scholar
  4. 4.
    Hong, Y.S., Kim, H.K., Kim, B.K.: Electronic Acupuncture system with built-in Multi-pad using intelligence. In: Proc. Of The 2012 Advanced Information Technology and Sensor Application, p. 162 (2012)Google Scholar
  5. 5.
    Sik, H.Y., Kug, P.C.: Proc. of the Sixth International Fuzzy System Association, IFSA, pp. 461–464 (1995)Google Scholar
  6. 6.
    Garg, M.L., Ahson, S.I., Gupta, D.V.: A Fuzzy Petri-nets for Knowledge Represent- action and Reasoning. Information Processing Letters 39, 165–171 (1992)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hong, Y.S., Kim, H.K., Kim, B.K.: Implementation of Adaptive Electronic Acupuncture System using Intelligent Diagnosis System. Internation Journal of Control and Automation 5(3), 141–l52 (2012)Google Scholar
  8. 8.
    Leung, K.S., Lam, W.: Fuzzy Concepts in Expert Systems. IEEE Computer, 43–56 (September 1988), [10] Looney, G.C., Alfize, A.: Logical Controls via Boolean Rule Matrix Transfor- mation. IEEE Trans. on SMC 17(6), 1077–1082 (November/December 1987)Google Scholar
  9. 9.
    Looney, G.C.: Fuzzy Petri Nets for Rule- based Decision Making. IEEE Trans. on SMC 18(1) (January/February 1988), [11] O’Rourke, M.F., Kelly, R.P., Avolio, A.P.: The Arterial Pulse, 1st edn. Lea & Febiger, Philadelphia (1992)Google Scholar
  10. 10.
    Gong, Y., Chen, H., Pu, J., Lian, Y., Chen, S.: Quantitative investigation on normal pathological tongue shape and correlation analysis between hypertension and syndrome. China Journal of Traditional Chinese Medicine and Pharmacy (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Dept. of Computer ScienceSangji UniversityWonju-siKorea
  2. 2.School of Computer InformationKyungpook National UniversityDaeguKorea
  3. 3.Dept. of Information & Telecommunication Eng.Gangneung-Wonju National UniversityWonjuKorea

Personalised recommendations