A Fast TRW Algorithm Using Binary Pattern

  • Jun-Young Park
  • Chang-Suk Cho
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 279)


A fast TRW algorithm that calculates disparity map for stereo vision is proposed. The fast TRW algorithm using binary pattern could reduce processing time by skipping invalid area. In order to skipping the invalid area we designed a binary pattern image to classify valid and invalid area of pattern from the object. To verify the effectiveness of our method we investigated reliability of disparity map between the results of TRW and our algorithm. As a result of our investigation for the reliability, the result by our method shows slightly larger error rate than TRW but the difference is not so large, whereas our method can generally reduce 11.14% of processing time than TRW. If calibration work need not the case that very small error rate is requested, our method will be a very effective one.


Stereo vision Stereo matching Belief propagation TRW 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aschwanden, P., Guggenbuhl, W.: Experimental Results from a Comparative Study on Correlation-Type Registration Algorithms. In: Forstner, Ruwiedel (eds.) Robust Computer Vision, pp. 268–289. Wickmann (1993)Google Scholar
  2. 2.
    Bhat, D.N., Nayar, S.K.: Ordinal Measures for Image Correspondence. IEEE Trans. Pattern Analysis and Machine Intelligence 20, 415–423 (1998)CrossRefGoogle Scholar
  3. 3.
    Bigone, F., Henricsson, O., Fua, P., Stricker, M.: Automatic Extraction of Generic House Roofs from High Resolution Aerial Imagery. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 85–96. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Birchfield, S., Tomasi, C.: Multiway Cut for Stereo and Motion with Slanted Surfaces. In: Proc. Int’l Conf. Computer Vision, vol. 1, pp. 489–495 (1999)Google Scholar
  5. 5.
    Belhumeur, P.N.: A Bayesian Approach to Binocular Stereopsis. Int’l J. Computer Vision 19(3), 237–260 (1996)CrossRefGoogle Scholar
  6. 6.
    Birchfield, S., Tomasi, C.: Depth Discontinuities by Pixel-to-Pixel Stereo. Technical Report STAN-CS-TR-96-1573, Stanford Univ. (1996)Google Scholar
  7. 7.
    Boykov, Y., Veksler, O., Zabih, R.: Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans. Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-cut/Max-flow Algorithms for Energy Minimization in Vision. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 359–374. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(6), 4 (2008)Google Scholar
  11. 11.
    Wainwright, M., Jaakkola, T., Willsky, A.: Map Estimation via Agreement on Trees: Message-Passing and Linear Programming. IEEE Trans. Information Theory 51(11), 3697–3717 (2005)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Felzenszwalb, P., Huttenlocher, D.: Efficient Belief Propagation for Early Vision. Int’l J. Computer Vision 70(1), 41–54 (2006)CrossRefGoogle Scholar
  13. 13.
    Yu, T., Lin, R., Super, B., Tang, B.: Efficient Message Representations for Belief Propagation. In: ICCV, pp. 1–2 (October 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jun-Young Park
    • 1
  • Chang-Suk Cho
    • 2
  1. 1.Eyenix Co., Ltd.Suwon-SiKorea
  2. 2.Div. of Information & TelecommunicationHan-Shin UniversityOsan-SiKorea

Personalised recommendations