Advertisement

Clustering Method Using Weighted Preference Based on RFM Score for Personalized Recommendation System in u-Commerce

  • Young Sung Cho
  • Song Chul Moon
  • Seon-phil Jeong
  • In-Bae Oh
  • Keun Ho Ryu
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 280)

Abstract

This paper proposes a new clustering method using the weighted preference based on RFM(Recency, Frequency, Monetary) Score for personalized recommendation in u-commerce under ubiquitous computing environment which is required by real time accessibility and agility. In this paper, using an implicit method without onerous question and answer to the users, not used user’s profile for rating, it is necessary for us to extract the most frequent purchase items from the whole purchase data and to calculate the weighted preference of item for customer in order to reduce customers’ search effort, to reflect frequently changing trends by emphasizing the important items and to improve the rate of recommendation with high purchasability. To verify improved better performance of proposing system than the previous systems, we carry out the experiments in the same dataset collected in a cosmetic internet shopping mall.

Keywords

RFM Analysis Collaborative Filtering k-means Clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cho, Y.S., Jeong, S.P., Ryu, K.H.: Implementation of Personalized u-commerce Recommendation System using Preference of Item Category based on RFM. In: The 6th International Conference on Ubiquitous Information Technologies & Applications, pp. 109–114 (December 2011)Google Scholar
  2. 2.
    Cho, Y.S., Moon, S.C., Noh, S.C., Ryu, K.H.: Implementation of Personalized recommendation System using k-means Clustering of Item Category based on RFM. In: 2012 IEEE International Conference on Management of Innovation & Technology Publication (June 2012)Google Scholar
  3. 3.
    Cho, Y.S., Moon, S.C., Ryu, K.H.: Personalized Recommendation System using FP-tree Mining based on RFM. In: KSCI, vol. 17(2) (February 2012)Google Scholar
  4. 4.
    Cho, Y.S., Moon, S.C., Ryu, K.H.: Mining Association Rules using RFM Scoring Method for Personalized u-Commerce Recommendation System in emerging data. In: Kim, T.-h., Ramos, C., Abawajy, J., Kang, B.-H., Ślęzak, D., Adeli, H. (eds.) MAS/ASNT 2012. CCIS, vol. 341, pp. 190–198. Springer, Heidelberg (2012)Google Scholar
  5. 5.
    Cho, Y.S., Moon, S.C., Jeong, S.P., Oh, I.B., Ryu, K.H.: Clustering Method using Item Preference based on RFM for Recommendation System in u-Commerce. In: Han, Y.-H., Park, D.-S., Jia, W., Yeo, S.-S. (eds.) Ubiquitous Information Technologies and Applications. LNEE, vol. 214, pp. 353–362. Springer, Heidelberg (2012)Google Scholar
  6. 6.
    Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. The MIT Press (2001)Google Scholar
  7. 7.
    Collier, K., Carey, B., Grusy, E., Marjaniemi, C., Sautter, D.: A Perspective on Data Mining. Northern Arizona University (1998)Google Scholar
  8. 8.
    Shin, M.-S.: An Alert Data Mining Framework for Intrusion Detection System. Journal of Korea Academia-Industrial cooperation Society 12(1) (2011)Google Scholar
  9. 9.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning – Data Mining, Inference, and Prediction. In: Springer (2001)Google Scholar
  10. 10.
    Herlocker, J.L., Kosran, J.A., Borchers, A., Riedl, J.: An Algorithm Framework for Performing Collaborative Filtering. In: Proceedings of the 1999 Conference on Research and Development in Information Research and Development in Information Retrival (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Young Sung Cho
    • 1
  • Song Chul Moon
    • 2
  • Seon-phil Jeong
    • 3
  • In-Bae Oh
    • 4
  • Keun Ho Ryu
    • 1
  1. 1.Department of Computer ScienceChungbuk National UniversityCheongjuKorea
  2. 2.Department of Computer ScienceNamseoul UniversityCheonan-CityKorea
  3. 3.Computer Science and TechnologyDST, BNU-HKBU United International CollegeZhuhaiP.R.China
  4. 4.Chungbuk Health & Science UniversityChungbukKorea

Personalised recommendations