Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8000))

Abstract

Assessing the quality of linked data currently published on the Web is a crucial need of various data-intensive applications. Extensive work on similar applications for relational data and queries has shown that data provenance can be used in order to compute trustworthiness, reputation and reliability of query results, based on the source data and query operators involved in their derivation. In particular, abstract provenance models can be employed to record information about source data and query operators during query evaluation, and later be used e.g., to assess trust for individual query results. In this paper, we investigate the extent to which relational provenance models can be leveraged for capturing the provenance of SPARQL queries over linked data, and identify their limitations. To overcome these limitations, we advocate the need for new provenance models that capture the full expressive power of SPARQL, and can be used to support assessment of various forms of data quality for linked data manipulated declaratively by such queries.

An earlier version of this paper appeared in IEEE Internet Computing 15(1): 31-39, 2011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amsterdamer, Y., Deutch, D., Tannen, V.: Provenance for Aggregate Queries. In: PODS (2011)

    Google Scholar 

  2. Arenas, M., Pérez, J.: Querying Semantic Web Data with SPARQL. In: PODS (2011)

    Google Scholar 

  3. Artz, D., Gil, Y.: A Survey of Trust in Computer Science and the Semantic Web. Web Semantics 5(2) (2007)

    Google Scholar 

  4. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: ULDBs: Databases with Uncertainty and Lineage. In: VLDB (2006)

    Google Scholar 

  5. Buneman, P., Cheney, J., Vansummeren, S.: On the Expressiveness of Implicit Provenance in Query and Update Languages. ACM TODS 33(4) (2008)

    Google Scholar 

  6. Buneman, P., Khanna, S., Tan, W.-C.: Why and Where: A Characterization of Data Provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Carroll, J.J., Bizer, C., Hayes, P.J., Stickler, P.: Named Graphs. Web Semantics 3(4) (2005)

    Google Scholar 

  8. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in Databases: Why, Where and How. Foundations and Trends in Databases 1(4) (2009)

    Google Scholar 

  9. Cui, Y., Widom, J.: Lineage Tracing for General Data Warehouse Transformations. In: VLDB (2001)

    Google Scholar 

  10. Damásio, C.V., Analyti, A., Antoniou, G.: Provenance for SPARQL queries. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 625–640. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and opportunities. In: SIGMOD (2008)

    Google Scholar 

  12. Dividino, R., Sizov, S., Staab, S., Schueler, B.: Querying for Provenance, Trust, Uncertainty and other Meta Knowledge in RDF. Web Semantics 7(3) (2009)

    Google Scholar 

  13. Flouris, G., Fundulaki, I., Pediaditis, P., Theoharis, Y., Christophides, V.: Coloring RDF Triples to Capture Provenance. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 196–212. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for Computational Tasks: A Survey. CiSE 10(3) (2008)

    Google Scholar 

  15. Fuhr, N., Rölleke, T.: A Probabilistic Relational Algebra for the Integration of Information Retrieval and Database Systems. ACM TOIS 14(1) (1997)

    Google Scholar 

  16. Geerts, F., Karvounarakis, G., Christophides, V., Fundulaki, I.: Algebraic Structures for Capturing the Provenance of SPARQL Queries (submitted for publication)

    Google Scholar 

  17. Geerts, F., Kementsietsidis, A., Milano, D.: MONDRIAN: Annotating and Querying Databases through Colors and Blocks. In: ICDE (2006)

    Google Scholar 

  18. Geerts, F., Poggi, A.: On Database Query Languages for K-Relations. Applied Logic 8(2) (2010)

    Google Scholar 

  19. Glavic, B., Alonso, G.: Perm: Processing Provenance and Data on the Same Data Model through Query Rewriting. In: ICDE (2009)

    Google Scholar 

  20. Green, T.J.: Containment of Conjunctive Queries on Annotated Relations. Theory of Computing Systems 49(2) (2011)

    Google Scholar 

  21. Green, T.J., Karvounarakis, G., Ives, Z.G., Tannen, V.: Update Exchange with Mappings and Provenance. In: VLDB (2007)

    Google Scholar 

  22. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance Semirings. In: PODS (2007)

    Google Scholar 

  23. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers (2011)

    Google Scholar 

  24. Imielinski, T., Lipski, W.: Incomplete Information in Relational Databases. JACM 31(4) (1984)

    Google Scholar 

  25. Karvounarakis, G., Ives, Z.G., Tannen, V.: Querying Data Provenance. In: SIGMOD (2010)

    Google Scholar 

  26. Lian, X., Chen, L.: Efficient Query Answering in Probabilistic RDF graphs. In: SIGMOD, pp. 157–168. ACM (2011)

    Google Scholar 

  27. Manola, F., Miller, E., McBride, B.: RDF Primer (February 2004), http://www.w3.org/TR/rdf-primer

  28. Mumick, I.S., Shmueli, O.: Finiteness Properties of Database Queries. In: ADC (1993)

    Google Scholar 

  29. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM TODS 34(3) (2009)

    Google Scholar 

  30. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (January 2008), http://www.w3.org/TR/rdf-sparql-query

  31. Udrea, O., Recupero, D.R., Subrahmanian, V.S.: Annotated RDF. ACM Trans. Comput. Logic 11(2), 10:1–10:41 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karvounarakis, G., Fundulaki, I., Christophides, V. (2013). Provenance for Linked Data. In: Tannen, V., Wong, L., Libkin, L., Fan, W., Tan, WC., Fourman, M. (eds) In Search of Elegance in the Theory and Practice of Computation. Lecture Notes in Computer Science, vol 8000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41660-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41660-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41659-0

  • Online ISBN: 978-3-642-41660-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics