Skip to main content

An Improvement to the OpenMP Version of BoomerAMG

  • Conference paper
High Performance Computing (HPC 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 207))

Included in the following conference series:

  • 874 Accesses

Abstract

Algebraic multigrid(AMG) method is one of the most efficient iterative methods for solving the linear systems which arising from discretizations of partial differential equations. Parallel AMG has been widely used in large-scale scientific and engineering computation. In this paper, considering a class of linear algebraic equations with sparse and banded coefficient matrices, we improve the OpenMP version of BoomerAMG by modifying its modules of the parallel interpolation and the parallel coarse grid operator. The improved version of BoomerAMG is applied to solve the Laplace equation and a class of two-dimensional three-temperature radiative diffusion equations. Numerical results demonstrate that the new method yields better scalability and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandt, A., McCormick, S.F., Ruge, J.W.: Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations, Tech. Rep., Institute for Computational Studies, Colorado State University (1982)

    Google Scholar 

  2. Brandt, A.: General Highly Accurate Algebraic Coarsening. Electron. Trans. Numer. Anal. 10, 1–20 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Brandt, A.: Multiscale scientific computation: Review 2001. In: Barth, T.J., Chan, T.F., Haimes, R. (eds.) Multiscale and Multiresolution Methods: Theory and Applications, pp. 1–96. Springer, Heidelberg (2001)

    Google Scholar 

  4. Brezina, M., Falgout, R., Maclachlan, S., Manteuffel, T., McCormick, S., Ruge, J.: Adaptive smoothed aggregation. SIAM J. Sci. Comput. 25, 1896–1920 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory programming. IEEE Computational Science and Engineering 5(1), 46–55 (1998)

    Article  Google Scholar 

  6. Feng, C.S., Shu, S., Wang, J.X.: An Efficient Parallel Preconditioner For Solving H(Curl) Ellip-tic Problem And Parallel Implementation. Journal of Numerical Methods and Computer Applicat. 33(1), 48–58 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Applied Numerical Mathematics 41, 155–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. HYPRE: High performance preconditioner, http://computation.llnl.gov/casc/hypre/

  9. Nie, C.Y., Shu, S., Sheng, Z.Q.: Symmetry-preserving Finite Volume Element Scheme on Unstructured Quadrilateral Grids. Chinese Journal of Computational Physics 26(2), 91–99 (2009)

    Google Scholar 

  10. Sterck, H.D., Yang, U.M., Heys, J.J.: Reducing complextity in parallel algebraic multigrid preconditioners. SIAM J. Mat. Anal. Appl. 27(4), 1019–1039 (2006)

    Article  MATH  Google Scholar 

  11. Wan, W.L., Chan, T.F., Smith, B.: An Energy-Minimizing Interpolation for Robust Multigrid Methods. SIAM J. Sci. Comput. 21, 1632–1649 (1999)

    Article  MathSciNet  Google Scholar 

  12. Xu, J., Zikatanov, L.: On An Energy-Minimizing Basis for Algebraic Multigrid Methods. Comput. Vis. Sci. 7, 121–127 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Xu, X.W., Mo, Z.Y., Cao, X.L.: Parallel scalability analysis for multigrid solvers in HYPRE. Journal of Software 20, 8–14 (2009)

    Google Scholar 

  14. Yuan, Q.B., Zhao, J.B., Chen, M.Y., Sun, N.H.: Performance Bottleneck Analysis and Solution of Shared Memory Operating System on a Multi-Core Platform. Journal of Computer Research and Development 48(12), 2268–2276 (2011)

    Google Scholar 

  15. Zhang, Y.Q., Sun, J.C., Chi, X.B., Tang, Z.M.: Memory Complexity Analysis on Numerical Programs. Chinese Journal of Computers 23(4), 363–373 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feng, C., Shu, S., Yue, X. (2013). An Improvement to the OpenMP Version of BoomerAMG. In: Zhang, Y., Li, K., Xiao, Z. (eds) High Performance Computing. HPC 2012. Communications in Computer and Information Science, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41591-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41591-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41590-6

  • Online ISBN: 978-3-642-41591-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics