Skip to main content

Animal Toxins Influence Voltage-Gated Sodium Channel Function

Part of the Handbook of Experimental Pharmacology book series (HEP,volume 221)

Abstract

Voltage-gated sodium (Nav) channels are essential contributors to neuronal excitability, making them the most commonly targeted ion channel family by toxins found in animal venoms. These molecules can be used to probe the functional aspects of Nav channels on a molecular level and to explore their physiological role in normal and diseased tissues. This chapter summarizes our existing knowledge of the mechanisms by which animal toxins influence Nav channels as well as their potential application in designing therapeutic drugs.

Keywords

  • Sodium channel
  • Animal toxin
  • Pore-blocker
  • Gating-modifier
  • Venom

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe T, Kawai N, Niwa A (1982) Purification and properties of a presynaptically acting neurotoxin, mandaratoxin, from hornet (Vespa mandarinia). Biochemistry 21(7):1693–1697

    PubMed  CAS  Google Scholar 

  • Agnew WS et al (1978) Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. Proc Natl Acad Sci U S A 75(6):2606–10

    PubMed Central  PubMed  CAS  Google Scholar 

  • Alabi AA et al (2007) Portability of paddle motif function and pharmacology in voltage sensors. Nature 450(7168):370–5

    PubMed Central  PubMed  CAS  Google Scholar 

  • Alsen C, Harris J, Tesseraux I (1981) Mechanical and electrophysiological effects of sea anemone (Anemonia sulcata) toxins on rat innervated and denervated skeletal muscle. Br J Pharmacol 74(1):61–71

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ashcroft F (1999) Ion channels and disease, vol 1. Elsevier, Amsterdam, p 481

    Google Scholar 

  • Bagnis R et al (1980) Origins of ciguatera fish poisoning: a new dinoflagellate, Gambierdiscus toxicus Adachi and Fukuyo, definitively involved as a causal agent. Toxicon 18(2):199–208

    PubMed  CAS  Google Scholar 

  • Baldomero MO, Patrice SC, Maren W, Alexander F (2014) Biodiversity of cone snails and other venomous marine gastropods: evolutionary success through neuropharmacology. Annu Rev Anim Biosci 2:487–513

    Google Scholar 

  • Barbier J et al (2004) A d-conotoxin from Conus ermineus venom inhibits inactivation in vertebrate neuronal Na+ channels but not in skeletal and cardiac muscles. J Biol Chem 279:4680–4685

    PubMed  CAS  Google Scholar 

  • Barchi R, Cohen S, Murphy L (1980) Purification from rat sarcolemma of the saxitoxin-binding component of the excitable membrane sodium channel. Proc Natl Acad Sci U S A 77(3):1306–1310

    PubMed Central  PubMed  CAS  Google Scholar 

  • Barhanin J et al (1981) Structure-function relationships of sea anemone toxin II from Anemonia sulcata. J Biol Chem 256(11):5764–5769

    PubMed  CAS  Google Scholar 

  • Baron A et al (2013) Venom toxins in the exploration of molecular, physiological and pathophysiological functions of acid-sensing ion channels. Toxicon 75:187–204

    PubMed  CAS  Google Scholar 

  • Benoit E, Legrand A, Dubois J (1986) Effects of ciguatoxin on current and voltage clamped frog myelinated nerve fibre. Toxicon 24(4):357–364

    PubMed  CAS  Google Scholar 

  • Benzinger G et al (1998) A specific interaction between the cardiac sodium channel and site-3 toxin anthopleurin B. J Biol Chem 273(1):80–84

    PubMed  CAS  Google Scholar 

  • Bidard J et al (1984) Ciguatoxin is a novel type of Na+ channel toxin. J Biol Chem 259(13):8353–8357

    PubMed  CAS  Google Scholar 

  • Billen B, Bosmans F, Tytgat J (2008) Animal peptides targeting voltage-activated sodium channels. Curr Pharm Des 14(24):2492–502

    PubMed  CAS  Google Scholar 

  • Bosmans F, Escoubas P, Nicholson GM (2009) Animal toxins: state of the art. In: De Lima ME (ed) Perspectives in health and biotechnology. Editora UFMG, Belo Horizonte

    Google Scholar 

  • Bosmans F, Swartz KJ (2010) Targeting voltage sensors in sodium channels with spider toxins. Trends Pharmacol Sci 31(4):175–182

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bosmans F et al (2004) The poison Dart frog’s batrachotoxin modulates Nav1.8. FEBS Lett 577(1–2):245–8

    PubMed  CAS  Google Scholar 

  • Bosmans F et al (2006) Four novel tarantula toxins as selective modulators of voltage-gated sodium channel subtypes. Mol Pharmacol 69(2):419–29

    PubMed  CAS  Google Scholar 

  • Bosmans F, Martin-Eauclaire MF, Swartz KJ (2008) Deconstructing voltage sensor function and pharmacology in sodium channels. Nature 456(7219):202–8

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bosmans F et al (2011) Functional properties and toxin pharmacology of a dorsal root ganglion sodium channel viewed through its voltage sensors. J Gen Physiol 138(1):59–72

    PubMed Central  PubMed  CAS  Google Scholar 

  • Buczek O et al (2005a) Characterization of D-amino-acid-containing excitatory conotoxins and redefinition of the I-conotoxin superfamily. FEBS J 272(16):4178–88

    PubMed  CAS  Google Scholar 

  • Buczek O, Bulaj G, Olivera BM (2005b) Conotoxins and the posttranslational modification of secreted gene products. CMLS 62(24):3067–79

    PubMed  CAS  Google Scholar 

  • Buczek O et al (2008) I(1)-superfamily conotoxins and prediction of single D-amino acid occurrence. Toxicon 51(2):218–29

    PubMed  CAS  Google Scholar 

  • Bulaj G (2008) Integrating the discovery pipeline for novel compounds targeting ion channels. Curr Opin Chem Biol 12(4):441–7

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bulaj G et al (2001) d-Conotoxin structure/function through a cladistic analysis. Biochemistry 40:13201–13208

    PubMed  CAS  Google Scholar 

  • Bulaj G et al (2005) Novel conotoxins from Conus striatus and Conus kinoshitai selectively block TTX-resistant sodium channels. Biochemistry 44:7259–7265

    PubMed  CAS  Google Scholar 

  • Bulaj G et al (2006) Synthetic μO-conotoxin MrVIB blocks TTX-resistant sodium channel Nav1.8 and has a long-lasting analgesic activity. Biochemistry 45:7404–7414

    PubMed  CAS  Google Scholar 

  • Cahalan MD (1975) Modification of sodium channel gating in frog myelinated nerve fibres by Centruroides sculpturatus scorpion venom. J Physiol 244(2):511–34

    PubMed Central  PubMed  CAS  Google Scholar 

  • Campos F, Coronas F, Beirão P (2004) Voltage-dependent displacement of the scorpion toxin Ts3 from sodium channels and its implication on the control of inactivation. Br J Pharmacol 142(7):1115–1122

    PubMed Central  PubMed  CAS  Google Scholar 

  • Campos FV et al (2007) beta-Scorpion toxin modifies gating transitions in all four voltage sensors of the sodium channel. J Gen Physiol 130(3):257–68

    PubMed Central  PubMed  CAS  Google Scholar 

  • Campos FV et al (2008) Alpha-scorpion toxin impairs a conformational change that leads to fast inactivation of muscle sodium channels. J Gen Physiol 132(2):251–63

    PubMed Central  PubMed  CAS  Google Scholar 

  • Capes DL et al (2012) Gating transitions in the selectivity filter region of a sodium channel are coupled to the domain IV voltage sensor. Proc Natl Acad Sci U S A 109(7):2648–53

    PubMed Central  PubMed  CAS  Google Scholar 

  • Catterall W (1975) Activation of the action potential Na+ ionophore of cultured neuroblastoma cells by veratridine and batrachotoxin. J Biol Chem 250(11):4053–4059

    PubMed  CAS  Google Scholar 

  • Catterall WA (1980) Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol 20:15–43

    PubMed  CAS  Google Scholar 

  • Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26(1):13–25

    PubMed  CAS  Google Scholar 

  • Catterall W, Beress L (1978) Sea anemone toxin and scorpion toxin share a common receptor site associated with the action potential sodium ionophore. J Biol Chem 253(20):7393–7396

    PubMed  CAS  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57(4):397–409

    PubMed  CAS  Google Scholar 

  • Catterall WA et al (2007) Voltage-gated ion channels and gating modifier toxins. Toxicon 49(2):124–41

    PubMed  CAS  Google Scholar 

  • Cestèle S et al (1998) Voltage sensor-trapping: enhanced activation of sodium channels by beta-scorpion toxin bound to the S3-S4 loop in domain II. Neuron 21(4):919–931

    PubMed  Google Scholar 

  • Cestèle S et al (2006) Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin. J Biol Chem 281(30):21332–21344

    PubMed Central  PubMed  Google Scholar 

  • Cha A et al (1999) Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron 22(1):73–87

    PubMed  CAS  Google Scholar 

  • Chanda B, Bezanilla F (2002) Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J Gen Physiol 120(5):629–45

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chandy KG et al (2004) K+ channels as targets for specific immunomodulation. Trends Pharmacol Sci 25(5):280–9

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cooper EC, Tomiko SA, Agnew WS (1987) Reconstituted voltage-sensitive sodium channel from Electrophorus electricus: chemical modifications that alter regulation of ion permeability. Proc Natl Acad Sci U S A 84(17):6282–6

    PubMed Central  PubMed  CAS  Google Scholar 

  • Corzo G et al (2007) Solution structure and alanine scan of a spider toxin that affects the activation of mammalian voltage-gated sodium channels. J Biol Chem 282(7):4643–52

    PubMed  CAS  Google Scholar 

  • Couraud F et al (1982) Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon 20(1):9–16

    PubMed  CAS  Google Scholar 

  • Cruz LJ et al (1985) Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J Biol Chem 260:9280–9288

    PubMed  CAS  Google Scholar 

  • Cummins TR et al (1999) A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 19(24):RC43

    PubMed  CAS  Google Scholar 

  • Daly NL et al (2004) Structures of muO-conotoxins from Conus marmoreus. I nhibitors of tetrodotoxin (TTX)-sensitive and TTX-resistant sodium channels in mammalian sensory neurons. J Biol Chem 279(24):25774–82

    PubMed  CAS  Google Scholar 

  • de la Vega R, Vega RC, Possani LD (2005) Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon 46(8):831–44

    Google Scholar 

  • Du Y et al (2011) Identification of new batrachotoxin-sensing residues in segment IIIS6 of the sodium channel. J Biol Chem 286(15):13151–60

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dumbacher J, Spande T, Daly J (2000) Batrachotoxin alkaloids from passerine birds: a second toxic bird genus (Ifrita kowaldi) from New Guinea. Proc Natl Acad Sci U S A 97(24):12970–12975

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dumbacher J et al (2004) Melyrid beetles (Choresine): a putative source for the batrachotoxin alkaloids found in poison-dart frogs and toxic passerine birds. Proc Natl Acad Sci U S A 101(45):15857–15860

    PubMed Central  PubMed  CAS  Google Scholar 

  • Edgerton GB, Blumenthal KM, Hanck DA (2008) Evidence for multiple effects of ProTxII on activation gating in Na(V)1.5. Toxicon 52(3):489–500

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ekberg J et al (2006) muO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proc Natl Acad Sci U S A 103(45):17030–5

    PubMed Central  PubMed  CAS  Google Scholar 

  • Escoubas P et al (2002) Novel tarantula toxins for subtypes of voltage-dependent potassium channels in the Kv2 and Kv4 subfamilies. Mol Pharmacol 62(1):48–57

    PubMed  CAS  Google Scholar 

  • Fainzilber M et al (1995) New sodium channel blocking conotoxins also affect calcium currents in Lymnaea neurons. Biochemistry 34:5364–5371

    PubMed  CAS  Google Scholar 

  • Felix JP et al (2004) Functional assay of voltage-gated sodium channels using membrane potential-sensitive dyes. Assay Drug Dev Technol 2(3):260–8

    PubMed  CAS  Google Scholar 

  • Fiedler B et al (2008) Specificity, affinity and efficacy of iota-conotoxin RXIA, an agonist of voltage-gated sodium channels Na(V)1.2, 1.6 and 1.7. Biochem Pharmacol 75(12):2334–44

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fozzard HA, Lipkind GM (2010) The tetrodotoxin binding site is within the outer vestibule of the sodium channel. Marine Drugs 8(2):219–34

    PubMed Central  PubMed  CAS  Google Scholar 

  • Furukawa T, Sasaoka T, Hosoya Y (1959) Effects of tetrodotoxin on the neuromuscular junction. Jpn J Physiol 9(2):143–52

    PubMed  CAS  Google Scholar 

  • Gallagher M, Blumenthal K (1994) Importance of the unique cationic residues arginine 12 and lysine 49 in the activity of the cardiotonic polypeptide anthopleurin B. J Biol Chem 269(1):254–259

    PubMed  CAS  Google Scholar 

  • Gilchrist J, Bosmans F (2012) Animal toxins can alter the function of Nav1.8 and Nav1.9. Toxins 4(8):620–32

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gill S et al (2003) Flux assays in high throughput screening of ion channels in drug discovery. Assay Drug Dev Technol 1(5):709–17

    PubMed  CAS  Google Scholar 

  • Gooley P, Blunt J, Norton R (1984) Conformational heterogeneity in polypeptide cardiac stimulants from sea anemones. FEBS Lett 174(1):15–19

    PubMed  CAS  Google Scholar 

  • Hanck D, Sheets M (2007) Site-3 toxins and cardiac sodium channels. Toxicon 49(2):181–193

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hartshorne R, Catterall W (1981) Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc Natl Acad Sci U S A 78(7):4620–4624

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hartshorne R et al (1982) The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical beta subunits. J Biol Chem 257(23):13888–13891

    PubMed  CAS  Google Scholar 

  • Hasson A et al (1993) Alteration of sodium currents by new peptide toxins from the venom of a molluscivorous Conus snail. Eur J Neurosci 5(1):56–64

    PubMed  CAS  Google Scholar 

  • Hille B (1975) The receptor for tetrodotoxin and saxitoxin. A structural hypothesis. Biophys J 15(6):615–619

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, vol 1, 3rd edn. Sinauer Associates, Sunderland, MA, p 814

    Google Scholar 

  • Hillyard DR et al (1989) A molluscivorous Conus toxin: conserved frameworks in conotoxins. Biochemistry 28(1):358–61

    PubMed  CAS  Google Scholar 

  • Hirama M et al (2001) Total synthesis of ciguatoxin CTX3C. Science (New York, NY) 294(5548):1904–1907

    CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) Propagation of electrical signals along giant nerve fibers. Proc R Soc Lond B Biol Sci 140(899):177–83

    PubMed  CAS  Google Scholar 

  • Holford M et al (2009) Pruning nature: Biodiversity-derived discovery of novel sodium channel blocking conotoxins from Conus bullatus. Toxicon 53(1):90–8

    PubMed Central  PubMed  CAS  Google Scholar 

  • Honma T, Shiomi K (2006) Peptide toxins in sea anemones: structural and functional aspects. Marine Biotechnol 8(1):1–10

    CAS  Google Scholar 

  • Horn R, Ding S, Gruber HJ (2000) Immobilizing the moving parts of voltage-gated ion channels. J Gen Physiol 116(3):461–76

    PubMed Central  PubMed  CAS  Google Scholar 

  • Huang L, Moran N, Ehrenstein G (1982) Batrachotoxin modifies the gating kinetics of sodium channels in internally perfused neuroblastoma cells. Proc Natl Acad Sci U S A 79(6):2082–2085

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jiang Y et al (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423(6935):33–41

    PubMed  CAS  Google Scholar 

  • Jimenez EC et al (2003) Novel excitatory Conus peptides define a new conotoxin superfamily. J Neurochem 85(3):610–21

    PubMed  CAS  Google Scholar 

  • Jover E et al (1978) Scorpion toxin: specific binding to rat synaptosomes. Biochem Biophys Res Commun 85(1):377–382

    PubMed  CAS  Google Scholar 

  • Kem W et al (1989) Isolation, characterization, and amino acid sequence of a polypeptide neurotoxin occurring in the sea anemone Stichodactyla helianthus. Biochemistry 28(8):3483–3489

    PubMed  CAS  Google Scholar 

  • Khera P, Blumenthal K (1996) Importance of highly conserved anionic residues and electrostatic interactions in the activity and structure of the cardiotonic polypeptide anthopleurin B. Biochemistry 35(11):3503–3507

    PubMed  CAS  Google Scholar 

  • Kinoshita E et al (2001) Novel wasp toxin discriminates between neuronal and cardiac sodium channels. Molecular pharmacology 59(6):1457–1463

    PubMed  CAS  Google Scholar 

  • Knapp O, McArthur JR, Adams DJ (2012) Conotoxins targeting neuronal voltage-gated sodium channel subtypes: potential analgesics? Toxins 4(11):1236–60

    PubMed Central  PubMed  CAS  Google Scholar 

  • Konno K et al (1998) Isolation and structure of pompilidotoxins, novel peptide neurotoxins in solitary wasp venoms. Biochem Biophys Res Commun 250(3):612–616

    PubMed  CAS  Google Scholar 

  • Konno K et al (2000) Molecular determinants of binding of a wasp toxin (PMTXs) and its analogs in the Na+ channels proteins. Neurosci Lett 285(1):29–32

    PubMed  CAS  Google Scholar 

  • Koppenhofer E, Schmidt H (1968a) Effect of scorpion venom on ionic currents of the node of Ranvier. I. The permeabilities PNa and PK. Pflugers Arch 303(2):133–49

    PubMed  CAS  Google Scholar 

  • Koppenhofer E, Schmidt H (1968b) Effect of scorpion venom on ionic currents of the node of Ranvier. II. Incomplete sodium inactivation. Pflugers Arch 303(2):150–61

    PubMed  CAS  Google Scholar 

  • Kuang Z, Zhang M-M, Gupta K, Gajewiak J, Gulyas J, Balaram P, Rivier JE, Olivera BM, Yoshikami D, Bulaj G, Norton RS (2013) Mammalian neuronal sodium channel blocker μ-conotoxin BuIIIB has a structured N-terminus that influences potency. ACS Chem Biol 8(6):1344–1351

    PubMed  CAS  Google Scholar 

  • Lee CW et al (2004) Solution structure and functional characterization of SGTx1, a modifier of Kv2.1 channel gating. Biochemistry 43(4):890–7

    PubMed  CAS  Google Scholar 

  • Leffler A et al (2005) Pharmacological properties of neuronal TTX-resistant sodium channels and the role of a critical serine pore residue. Pflugers Archiv 451(3):454–63

    PubMed  CAS  Google Scholar 

  • Legrand AM et al (1989) Isolation and some properties of ciguatoxin. J Appl Phycol 1:183–188

    Google Scholar 

  • Leipold E et al (2005) Molecular interaction of delta-conotoxins with voltage-gated sodium channels. FEBS Lett 579(18):3881–4

    PubMed  CAS  Google Scholar 

  • Leipold E et al (2006) Subtype specificity of scorpion beta-toxin Tz1 interaction with voltage-gated sodium channels is determined by the pore loop of domain 3. Mol Pharmacol 70(1):340–347

    PubMed  CAS  Google Scholar 

  • Leipold E et al (2007) μO conotoxins inhibit NaV channels by interfering with their voltage sensors in domain-2. Channels (Austin) 1(4):253–62

    Google Scholar 

  • Leipold E et al (2011) Molecular determinants for the subtype specificity of mu-conotoxin SIIIA targeting neuronal voltage-gated sodium channels. Neuropharmacology 61(1–2):105–11

    PubMed  CAS  Google Scholar 

  • Leipold E, Borges A, Heinemann SH (2012) Scorpion beta-toxin interference with NaV channel voltage sensor gives rise to excitatory and depressant modes. J Gen Physiol 139(4):305–19

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lewis R et al (1991) Purification and characterization of ciguatoxins from moray eel (Lycodontis javanicus, Muraenidae). Toxicon 29(9):1115–1127

    PubMed  CAS  Google Scholar 

  • Lewis RJ et al (2007) Isolation and structure-activity of mu-conotoxin TIIIA, a potent inhibitor of tetrodotoxin-sensitive voltage-gated sodium channels. Mol Pharmacol 71(3):676–85

    PubMed  CAS  Google Scholar 

  • Li D et al (2003) Function and solution structure of hainantoxin-I, a novel insect sodium channel inhibitor from the Chinese bird spider Selenocosmia hainana. FEBS Lett 555(3):616–22

    PubMed  CAS  Google Scholar 

  • Liao Z et al (2007) Solution structure of Jingzhaotoxin-III, a peptide toxin inhibiting both Nav1.5 and Kv2.1 channels. Toxicon 50(1):135–43

    PubMed  CAS  Google Scholar 

  • Linford N et al (1998) Interaction of batrachotoxin with the local anesthetic receptor site in transmembrane segment IVS6 of the voltage-gated sodium channel. Proc Natl Acad Sci U S A 95(23):13947–13952

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lipkind G, Fozzard H (1994) A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys J 66(1):1–13

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lipkind GM, Fozzard HA (2008) Voltage-gated Na channel selectivity: the role of the conserved domain III lysine residue. J Gen Physiol 131(6):523–9

    PubMed Central  PubMed  CAS  Google Scholar 

  • Llewellyn L, Bell P, Moczydlowski E (1997) Phylogenetic survey of soluble saxitoxin-binding activity in pursuit of the function and molecular evolution of saxiphilin, a relative of transferrin. Proc R Soc 264(1383):891–902

    CAS  Google Scholar 

  • Llewellyn L, Doyle J, Negri A (1998) A high-throughput, microtiter plate assay for paralytic shellfish poisons using the saxitoxin-specific receptor, saxiphilin. Anal Biochem 261(1):51–56

    PubMed  CAS  Google Scholar 

  • Lombet A, Bidard J, Lazdunski M (1987) Ciguatoxin and brevetoxins share a common receptor site on the neuronal voltage-dependent Na+ channel. FEBS Lett 219(2):355–359

    PubMed  CAS  Google Scholar 

  • Long SB et al (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450(7168):376–82

    PubMed  CAS  Google Scholar 

  • Marcotte P et al (1997) Effects of Tityus serrulatus scorpion toxin gamma on voltage-gated Na+ channels. Circ Res 80(3):363–9

    PubMed  CAS  Google Scholar 

  • Martin-Eauclaire MF, Couraud F (1992) Scorpion neurotoxins: effects and mechanisms. In: Chang LW, Dyer RS (eds) Handk. neurotoxicology. Marcel-Dekker, New York, NY

    Google Scholar 

  • M’Barek S et al (2004) First chemical synthesis of a scorpion alpha-toxin affecting sodium channels: the Aah I toxin of Androctonus australis hector. J Peptide Sci 10(11):666–677

    Google Scholar 

  • McArthur JR et al (2011) Interactions of key charged residues contributing to selective block of neuronal sodium channels by mu-conotoxin KIIIA. Mol Pharmacol 80(4):573–84

    PubMed  CAS  Google Scholar 

  • McCusker EC et al (2012) Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun 3:1102

    PubMed Central  PubMed  Google Scholar 

  • McIntosh JM et al (1995) A new family of conotoxins that blocks voltage-gated sodium channels. J Biol Chem 270:16796–16802

    PubMed  CAS  Google Scholar 

  • Mebs D (2002) Venomous and poisonous animals: a handbook for biologists, toxicologists and toxinologists, physicians and pharmacists, 1st edn. Medpharm, Lyttelton, New Zealand, p 360

    Google Scholar 

  • Michio M et al (1989) Structures of ciguatoxin and its congener. J Am Chem Soc 111:8289–8931

    Google Scholar 

  • Middleton RE et al (2002) Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry 41(50):14734–47

    PubMed  CAS  Google Scholar 

  • Milescu M et al (2007) Tarantula toxins interact with voltage sensors within lipid membranes. J Gen Physiol 130(5):497–511

    PubMed Central  PubMed  CAS  Google Scholar 

  • Milescu M et al (2009) Interactions between lipids and voltage sensor paddles detected with tarantula toxins. Nat Struct Mol Biol 16(10):1080–1085

    PubMed Central  PubMed  CAS  Google Scholar 

  • Miller J, Agnew W, Levinson S (1983) Principal glycopeptide of the tetrodotoxin/saxitoxin binding protein from electrophorus electricus: isolation and partial chemical and physical characterization. Biochemistry 22(2):462–470

    PubMed  CAS  Google Scholar 

  • Moore JW et al (1967) Basis of tetrodotoxin’s selectivity in blockage of squid axons. J Gen Physiol 50(5):1401–11

    PubMed Central  PubMed  CAS  Google Scholar 

  • Morabito M, Moczydlowski E (1994) Molecular cloning of bullfrog saxiphilin: a unique relative of the transferrin family that binds saxitoxin. Proc Natl Acad Sci U S A 91(7):2478–2482

    PubMed Central  PubMed  CAS  Google Scholar 

  • Narahashi T (1974) Chemicals as tools in the study of excitable membranes. Physiol Rev 54(4):813–89

    PubMed  CAS  Google Scholar 

  • Narahashi T, Moore JW, Scott WR (1964) Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J Gen Physiol 47:965–74

    PubMed Central  PubMed  CAS  Google Scholar 

  • Narahashi T, Anderson N, Moore J (1967) Comparison of tetrodotoxin and procaine in internally perfused squid giant axons. J Gen Physiol 50(5):1413–1428

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nieto FR et al (2012) Tetrodotoxin (TTX) as a therapeutic agent for pain. Marine Drugs 10(2):281–305

    PubMed Central  PubMed  CAS  Google Scholar 

  • Norton R (2009) Structures of sea anemone toxins. Toxicon 54(8):1075–1088

    PubMed  CAS  Google Scholar 

  • Norton RS, Pennington MW, Wulff H (2004) Potassium channel blockade by the sea anemone toxin ShK for the treatment of multiple sclerosis and other autoimmune diseases. Curr Med Chem 11(23):3041–52

    PubMed  CAS  Google Scholar 

  • Nunes KP et al (2013) New insights on arthropod toxins that potentiate erectile function. Toxicon 69:152–9

    PubMed  CAS  Google Scholar 

  • Oliveira J et al (2004) Binding specificity of sea anemone toxins to Nav 1.1-1.6 sodium channels: unexpected contributions from differences in the IV/S3-S4 outer loop. J Biol Chem 279(32):33323–33335

    PubMed  CAS  Google Scholar 

  • Olivera BM (1997) Conus venom peptides, receptor and ion channel targets and drug design: 50 million years of neuropharmacology (E.E. Just Lecture, 1996). Mol Biol Cell 8:2101–2109

    PubMed Central  PubMed  CAS  Google Scholar 

  • Payandeh J et al (2011) The crystal structure of a voltage-gated sodium channel. Nature 475(7356):353–8

    PubMed Central  PubMed  CAS  Google Scholar 

  • Payandeh J et al (2012) Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486(7401):135–9

    PubMed Central  PubMed  CAS  Google Scholar 

  • Phillips LR et al (2005) Voltage-sensor activation with a tarantula toxin as cargo. Nature 436(7052):857–60

    PubMed  CAS  Google Scholar 

  • Quandt F, Narahashi T (1982) Modification of single Na+ channels by batrachotoxin. Proc Natl Acad Sci U S A 79(21):6732–6736

    PubMed Central  PubMed  CAS  Google Scholar 

  • Richard Benzinger G (1999) G. Tonkovich, and D. Hanck, Augmentation of recovery from inactivation by site-3 Na channel toxins. A single-channel and whole-cell study of persistent currents. J Gen Physiol 113(2):333–346

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rogers J et al (1996) Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit. J Biol Chem 271(27):15950–15962

    PubMed  CAS  Google Scholar 

  • Romey G et al (1976) Sea anemone toxin:a tool to study molecular mechanisms of nerve conduction and excitation-secretion coupling. Proc Natl Acad Sci U S A 73(11):4055–4059

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ruta V, MacKinnon R (2004) Localization of the voltage-sensor toxin receptor on KvAP. Biochemistry 43(31):10071–9

    PubMed  CAS  Google Scholar 

  • Sahara Y et al (2000) A new class of neurotoxin from wasp venom slows inactivation of sodium current. Eur J Neurosci 12(6):1961–1970

    PubMed  CAS  Google Scholar 

  • Schantz E et al (1975) Letter: The structure of saxitoxin. J Am Chem Soc 97(5):1238

    PubMed  CAS  Google Scholar 

  • Schmalhofer WA et al (2008) ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors. Mol Pharmacol 74(5):1476–84

    PubMed  CAS  Google Scholar 

  • Seibert A et al (2003) Arg-14 loop of site 3 anemone toxins: effects of glycine replacement on toxin affinity. Biochemistry 42(49):14515–14521

    PubMed  CAS  Google Scholar 

  • Sheets MF et al (1999) The Na channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV, S4. Biophys J 77(2):747–57

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sheets MF, Kyle JW, Hanck DA (2000) The role of the putative inactivation lid in sodium channel gating current immobilization. J Gen Physiol 115(5):609–20

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sherif N, Fozzard H, Hanck D (1992) Dose-dependent modulation of the cardiac sodium channel by sea anemone toxin ATXII. Circul Res 70(2):285–301

    Google Scholar 

  • Shon KJ et al (1994) Delta-conotoxin GmVIA, a novel peptide from the venom of Conus gloriamaris. Biochemistry 33(38):11420–5

    PubMed  CAS  Google Scholar 

  • Shon K et al (1995) Purification, characterization and cloning of the lockjaw peptide from Conus purpurascens venom. Biochemistry 34:4913–4918

    PubMed  CAS  Google Scholar 

  • Shon K (1998) et al., μ-Conotoxin PIIIA, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes. J. Neurosci 18:473–4481

    Google Scholar 

  • Silva AO et al (2012) Inhibitory effect of the recombinant Phoneutria nigriventer Tx1 toxin on voltage-gated sodium channels. Biochimie 94(12):2756–63

    PubMed  CAS  Google Scholar 

  • Sivilotti L et al (1997) A single serine residue confers tetrodotoxin insensitivity on the rat sensory-neuron-specific sodium channel SNS. FEBS Lett 409(1):49–52

    PubMed  CAS  Google Scholar 

  • Smith JJ, Blumenthal KM (2007) Site-3 sea anemone toxins: molecular probes of gating mechanisms in voltage-dependent sodium channels. Toxicon 49(2):159–70

    PubMed  CAS  Google Scholar 

  • Smith JJ et al (2005) Differential phospholipid binding by site 3 and site 4 toxins. Implications for structural variability between voltage-sensitive sodium channel domains. J Biol Chem 280(12):11127–33

    PubMed  CAS  Google Scholar 

  • Smith JJ et al (2007) Molecular interactions of the gating modifier toxin ProTx-II with NaV 1.5: implied existence of a novel toxin binding site coupled to activation. J Biol Chem 282(17):12687–97

    PubMed  CAS  Google Scholar 

  • Sokolov S et al (2008) Inhibition of sodium channel gating by trapping the domain II voltage sensor with protoxin II. Mol Pharmacol 73(3):1020–8

    PubMed  CAS  Google Scholar 

  • Stroud MR, Hansen SJ, Olson JM (2011) In vivo bio-imaging using chlorotoxin-based conjugates. Curr Pharmaceut Design 17(38):4362–71

    CAS  Google Scholar 

  • Sudarslal S et al (2003) Sodium channel modulating activity in a delta-conotoxin from an Indian marine snail. FEBS letters 553(1–2):209–12

    PubMed  CAS  Google Scholar 

  • Swartz KJ (2007) Tarantula toxins interacting with voltage sensors in potassium channels. Toxicon 49(2):213–30

    PubMed Central  PubMed  CAS  Google Scholar 

  • Swartz KJ (2008) Sensing voltage across lipid membranes. Nature 456(7224):891–7

    PubMed Central  PubMed  CAS  Google Scholar 

  • Swartz KJ, MacKinnon R (1997a) Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron 18(4):665–73

    PubMed  CAS  Google Scholar 

  • Swartz KJ, MacKinnon R (1997b) Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K+ channels. Neuron 18(4):675–82

    PubMed  CAS  Google Scholar 

  • Teichert RW, et al (2012) Characterization of two neuronal subclasses through constellation pharmacology. In: Proceedings of the National Academy of Sciences. PNAS Early Edition: p. Published ahead of print, July 9

    Google Scholar 

  • Tejedor F, Catterall W (1988) Site of covalent attachment of alpha-scorpion toxin derivatives in domain I of the sodium channel alpha subunit. Proc Natl Acad Sci U S A 85(22):8742–8746

    PubMed Central  PubMed  CAS  Google Scholar 

  • Terlau H, Olivera BM (2004) Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev 84(1):41–68

    PubMed  CAS  Google Scholar 

  • Terlau H et al (1991) Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett 293(1–2):93–96

    PubMed  CAS  Google Scholar 

  • Terlau H et al (1996) Strategy for rapid immobilization of prey by a fish-hunting cone snail. Nature 381:148–151

    PubMed  CAS  Google Scholar 

  • Thomsen W, Catterall W (1989) Localization of the receptor site for alpha-scorpion toxins by antibody mapping: implications for sodium channel topology. Proc Natl Acad Sci U S A 86(24):10161–10165

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tokuyama T, Daly J, Witkop B (1969) The structure of batrachotoxin, a steroidal alkaloid from the Colombian arrow poison frog, Phyllobates aurotaenia, and partial synthesis of batrachotoxin and its analogs and homologs. J Am Chem Soc 91(14):3931–3938

    PubMed  CAS  Google Scholar 

  • Trainer V, Baden D, Catterall W (1994) Identification of peptide components of the brevetoxin receptor site of rat brain sodium channels. J Biol Chem 269(31):19904–19909

    PubMed  CAS  Google Scholar 

  • Ujihara S et al (2008) Interaction of ladder-shaped polyethers with transmembrane alpha-helix of glycophorin A as evidenced by saturation transfer difference NMR and surface plasmon resonance. Bioorg Med Chem Lett 18(23):6115–8

    PubMed  CAS  Google Scholar 

  • Ulbricht W (1998) Effects of veratridine on sodium currents and fluxes. Rev Physiol Biochem Pharmacol 133:1–54

    PubMed  CAS  Google Scholar 

  • Van Der Haegen A, Peigneur S, Tytgat J (2011) Importance of position 8 in μ-conotoxin KIIIA for voltage-gated sodium channel selectivity. FEBS J 278:3408–3418

    Google Scholar 

  • Vita C et al (1995) Scorpion toxins as natural scaffolds for protein engineering. Proc Natl Acad Sci U S A 92(14):6404–6408

    PubMed Central  PubMed  CAS  Google Scholar 

  • Walewska A et al (2008) NMR-based mapping of disulfide bridges in cysteine-rich peptides: application to the mu-conotoxin SxIIIA. J Am Chem Soc 130(43):14280–6

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang S, Wang G (1998) Point mutations in segment I-S6 render voltage-gated Na+ channels resistant to batrachotoxin. Proc Natl Acad Sci U S A 95(5):2653–2658

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang GK, Quan C, Wang SY (1998) Local anesthetic block of batrachotoxin-resistant muscle Na+ channels. Mol Pharmacol 54(2):389–96

    PubMed  CAS  Google Scholar 

  • Wang S, Nau C, Wang G (2000) Residues in Na(+) channel D3-S6 segment modulate both batrachotoxin and local anesthetic affinities. Biophys J 79(3):1379–1387

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang M et al (2008) JZTX-IV, a unique acidic sodium channel toxin isolated from the spider Chilobrachys jingzhao. Toxicon 52(8):871–80

    PubMed  CAS  Google Scholar 

  • Wang J et al (2011) Mapping the receptor site for alpha-scorpion toxins on a Na+ channel voltage sensor. Proc Natl Acad Sci U S A 108(37):15426–15431

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wasserstrom J et al (1993) Modification of cardiac Na+ channels by batrachotoxin: effects on gating, kinetics, and local anesthetic binding. Biophys J 65(1):386–395

    PubMed Central  PubMed  CAS  Google Scholar 

  • West PJ et al (2002) μ-Conotoxin SmIIIA, a potent inhibitor of TTX-resistant sodium channels in amphibian sympathetic and sensory neurons. Biochemistry 41:15388–15393

    PubMed  CAS  Google Scholar 

  • West PJ, Bulaj G, Yoshikami D (2005) Effects of delta-conotoxins PVIA and SVIE on sodium channels in the amphibian sympathetic nervous system. J Neurophysiol 94(6):3916–24

    PubMed  CAS  Google Scholar 

  • Wilson MJ et al (2011) μ-conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc Natl Acad Sci U S A 108(25):10302–7

    PubMed Central  PubMed  CAS  Google Scholar 

  • Woodward R (1964) The structure of tetrodotoxin. Pure Appl Chem 9:49–74

    CAS  Google Scholar 

  • Xiao Y et al (2005) Jingzhaotoxin-I, a novel spider neurotoxin preferentially inhibiting cardiac sodium channel inactivation. J Biol Chem 280(13):12069–76

    PubMed  CAS  Google Scholar 

  • Xiao Y et al (2008) Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration. J Biol Chem 283(40):27300–13

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xiao Y et al (2010) The tarantula toxins ProTx-II and huwentoxin-IV differentially interact with human Nav1.7 voltage sensors to inhibit channel activation and inactivation. Mol Pharmacol 78(6):1124–34

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xiao Y et al (2011) Common molecular determinants of tarantula huwentoxin-IV inhibition of Na+ channel voltage sensors in domains II and IV. J Biol Chem 286(31):27301–10

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xu Y et al (2013) Energetic role of the paddle motif in voltage gating of Shaker K(+) channels. Nat Struct Mol Biol 20(5):574–81

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yamaoka K et al (2009) Synthetic ciguatoxins selectively activate Nav1.8-derived chimeric sodium channels expressed in HEK293 cells. J Biol Chem 284(12):7597–7605

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yong-Yeng L et al (1981) Isolation and structure of brevetoxin B from the “red tide” dinoflagellate Ptychodiscus brevis (Gymnodinium breve). J Am Chem Soc 103:6773–6776

    Google Scholar 

  • Zhang MM et al (2006) Structural and functional diversities among mu-conotoxins targeting TTX-resistant sodium channels. Biochemistry 45(11):3723–32

    PubMed  CAS  Google Scholar 

  • Zhang MM et al (2007) Structure/function characterization of micro-conotoxin KIIIA, an analgesic, nearly irreversible blocker of mammalian neuronal sodium channels. J Biol Chem 282(42):30699–706

    PubMed  CAS  Google Scholar 

  • Zhang MM et al (2009) Synergistic and antagonistic interactions between tetrodotoxin and mu-conotoxin in blocking voltage-gated sodium channels. Channels (Austin) 3(1):32–8

    Google Scholar 

  • Zhang MM et al (2010) Cooccupancy of the outer vestibule of voltage-gated sodium channels by micro-conotoxin KIIIA and saxitoxin or tetrodotoxin. J Neurophysiol 104:88–97

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang X et al (2012) Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 486(7401):130–4

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang MM et al (2013a) Co-expression of Na(V) beta-subunits alters the kinetics of inhibition of voltage-gated sodium channels by pore-blocking mu-conotoxins. Br J Pharmacol 168:1597–1610

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang MM, Wilson MJ, Gajewiak J, Rivier JE, Bulaj G, Olivera BM, Yoshikami D (2013) Pharmacological fractionation of tetrodotoxin-sensitive sodium currents in rat dorsal root ganglion neurons by μ-conotoxins. Br J Pharmacol 169(1):102–14

    PubMed  CAS  Google Scholar 

  • Zorn S et al. (2006) The muO-conotoxin MrVIA inhibits voltage-gated sodium channels by associating with domain-3. FEBS Lett 580(5):1360–4.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Kenton J Swartz and Marie-France Martin-Eauclaire for hanatoxin, and AaHII/CssIV, respectively, and Thomas Gilchrist for making silhouettes that were adapted from photographs of Takifugu rupripes (Emőke Dénes/CC-BY-SA 2.5), Phyllobates bicolor (Luis Miguel Bugallo Sánchez/CC-BY-SA 3.0), Brachypelma smithi (Fir0002/CC-BY-SA 3.0), Centruroides suffusus (Pedro Sánchez/CC-BY-SA 3.0), Androctonus australis (Kmo5ap/CC-BY-SA 3.0), Vespula germanica (Richard Bartz/CC-BY-SA 2.5), and a diagram of an anemone (Hans Hillewaert/CC-BY-SA 3.0). TTX and β-pompilidotoxin were acquired from Alomone labs, ATX-II from Sigma Aldrich, and BTX was obtained from Latoxan through Fisher Scientific.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baldomero M. Olivera or Frank Bosmans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gilchrist, J., Olivera, B.M., Bosmans, F. (2014). Animal Toxins Influence Voltage-Gated Sodium Channel Function. In: Ruben, P. (eds) Voltage Gated Sodium Channels. Handbook of Experimental Pharmacology, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41588-3_10

Download citation