Bachrach, Y., Betzler, N., Faliszewski, P.: Probabilistic possible-winner determination. In: Proc. of AAAI 2010 (2010)
Google Scholar
Baumeister, D., Erdèlyi, G., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Computational aspects of approval voting. In: Laslier, J.-F., Sanver, R. (eds.) Handbook of Approval Voting, pp. 199–251. Springer (2010)
Google Scholar
Baumeister, D., Rothe, J.: Taking the final step to a full dichotomy of the possible winner problem in pure scoring rules. In: Proceedings of ECAI 2010 (2010)
Google Scholar
Betzler, N., Dorn, B.: Towards a dichotomy of finding possible winners in elections based on scoring rules. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 124–136. Springer, Heidelberg (2009)
MATH
CrossRef
Google Scholar
Betzler, N., Hemmann, S., Niedermeier, R.: A multivariate complexity analysis of determining possible winners given incomplete votes. In: Proceedings of IJCAI 2009, pp. 53–58 (2009)
Google Scholar
Betzler, N., Slinko, A., Uhlmann, J.: On the computation of fully proportional representation. Journal of Artificial Intelligence Research (2013)
Google Scholar
Brams, S., Fishburn, P.: Approval voting. American Political Review 72(3), 831–847 (1978)
MATH
CrossRef
Google Scholar
Brams, S., Fishburn, P.: Approval Voting, 2nd edn. Birkhäuser (1987)
Google Scholar
Brams, S., Sanver, R.: Critical strategies under approval voting: Who gets ruled in and ruled out. Electoral Studies 25(2), 287–305 (2006)
CrossRef
Google Scholar
Chevaleyre, Y., Lang, J., Maudet, N., Monnot, J., Xia, L.: New candidates welcome! possible winners with respect to the addition of new candidates. Mathematical Social Sciences 64(1), 74–88 (2012)
MathSciNet
MATH
CrossRef
Google Scholar
Darmann, A.: Popular committees. Mathematical Social Sciences (to appear, 2013)
Google Scholar
Delort, C., Spanjaard, O., Weng, P.: Committee selection with a weight constraint based on a pairwise dominance relation. In: ADT, pp. 28–41 (2011)
Google Scholar
Elkind, E., Lang, J., Saffidine, A.: Choosing collectively optimal sets of alternatives based on the condorcet criterion. In: IJCAI 2011, pp. 186–191 (2011)
Google Scholar
Endriss, U.: Sincerity and manipulation under approval voting. Theory and Decision (2011)
Google Scholar
Endriss, U., Pini, M.S., Rossi, F., Venable, K.B.: Preference aggregation over restricted ballot languages: Sincerity and strategy-proofness. In: Boutilier, C. (ed.) IJCAI 2009, pp. 122–127 (2009)
Google Scholar
Erdélyi, G., Nowak, M., Rothe, J.: Sincere-strategy preference-based approval voting broadly resists control. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 311–322. Springer, Heidelberg (2008)
CrossRef
Google Scholar
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)
MATH
Google Scholar
Kalech, M., Kraus, S., Kaminka, G.A., Goldman, C.V.: Practical voting rules with partial information. Autonomous Agents and Multiagent Systems 22(1), 151–182 (2011)
CrossRef
Google Scholar
Kilgour, M.: Approval balloting for multi-winner elections. In: Laslier, J.-F., Sanver, R. (eds.) Handbook of Approval Voting, pp. 105–124. Springer (2010)
Google Scholar
Klamler, C., Pferschy, U., Ruzika, S.: Committee selection with a weight constraint based on lexicographic rankings of individuals. In: Rossi, F., Tsoukias, A. (eds.) ADT 2009. LNCS, vol. 5783, pp. 50–61. Springer, Heidelberg (2009)
CrossRef
Google Scholar
Konczak, K., Lang, J.: Voting procedures with incomplete preferences. In: IJCAI 2005 Multidisciplinary Workshop on Advances in Preference Handling (2005)
Google Scholar
Lang, J., Pini, M.S., Rossi, F., Salvagnin, D., Venable, K.B., Walsh, T.: Winner determination in voting trees with incomplete preferences and weighted votes. In: Autonomous Agents and Multi-Agent Systems (2011)
Google Scholar
Laslier, J.-F.: The leader rule – a model of strategic approval voting in a large electorate. Journal of Theoretical Politics 21, 113–136 (2009)
CrossRef
Google Scholar
Laslier, J.-F., Sanver, R.: The basic approval voting game. In: Laslier, J.-F., Sanver, R. (eds.) Handbook of Approval Voting. Springer (2010)
Google Scholar
Meir, R., Procaccia, A., Rosenschein, J., Zohar, A.: The complexity of strategic behavior in multi-winner elections. JAIR 33, 149–178 (2008)
MathSciNet
MATH
CrossRef
Google Scholar
Nuñez, M.: Condorcet consistency of approval voting: a counter example in large Poisson games. Journal of Theoretical Politics 22, 64–84 (2010)
CrossRef
Google Scholar
Procaccia, A., Rosenschein, J., Zohar, A.: On the complexity of achieving proportional representation. Social Choice and Welfare 30(3), 353–362 (2008)
MathSciNet
MATH
CrossRef
Google Scholar
Saari, D.: Systematic analysis of multiple voting rules. Social Choice and Welfare 34(2), 217–247 (2010)
MathSciNet
MATH
CrossRef
Google Scholar
Sertel, M., Yılmaz, B.: The majoritarian compromise is majoritarian-optimal and subgame-perfect implementable. Social Choice and Welfare 16(4), 615–627 (1999)
MathSciNet
MATH
CrossRef
Google Scholar
De Sinopoli, F., Dutta, B., Laslier, J.-F.: Approval voting: three examples. International Journal of Game Theory 35(1), 27–38 (2006)
MathSciNet
MATH
CrossRef
Google Scholar
Skowron, P., Faliszewski, P., Slinko, A.: Achieving fully proportional representation is easy in practice. In: AAMAS 2013, pp. 399–406 (2013)
Google Scholar
Xia, L., Conitzer, V.: Determining possible and necessary winners under common voting rules given partial orders. In: Proceedings of AAAI 2008, pp. 196–201 (2008)
Google Scholar
Xia, L., Lang, J., Monnot, J.: Possible winners when new alternatives join: new results coming up! In: Sonenberg, L., Stone, P., Tumer, K., Yolum, P. (eds.) AAMAS. IFAAMAS, pp. 829–836 (2011)
Google Scholar