Skip to main content

Distributed Protocols for Leader Election: A Game-Theoretic Perspective

  • Conference paper
Distributed Computing (DISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8205))

Included in the following conference series:

Abstract

We do a game-theoretic analysis of leader election, under the assumption that each agent prefers to have some leader than to have no leader at all. We show that it is possible to obtain a fair Nash equilibrium, where each agent has an equal probability of being elected leader, in a completely connected network, in a bidirectional ring, and a unidirectional ring, in the synchronous setting. In the asynchronous setting, Nash equilibrium is not quite the right solution concept. Rather, we must consider ex post Nash equilibrium; this means that we have a Nash equilibrium no matter what a scheduling adversary does. We show that ex post Nash equilibrium is attainable in the asynchronous setting in all the networks we consider, using a protocol with bounded running time. However, in the asynchronous setting, we require that n > 2. We can get a fair ε-Nash equilibrium if n = 2 in the asynchronous setting, under some cryptographic assumptions (specifically, the existence of a pseudo-random number generator and polynomially-bounded agents), using ideas from bit-commitment protocols. We then generalize these results to a setting where we can have deviations by a coalition of size k. In this case, we can get what we call a fair k-resilient equilibrium if n > 2k; under the same cryptographic assumptions, we can a get a k-resilient equilibrium if n = 2k. Finally, we show that, under minimal assumptions, not only do our protocols give a Nash equilibrium, they also give a sequential equilibrium [23], so players even play optimally off the equilibrium path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation. In: Proc. 25th ACM Symp. Principles of Distributed Computing, pp. 53–62 (2006)

    Google Scholar 

  2. Abraham, I., Dolev, D., Halpern, J.Y.: Lower bounds on implementing robust and resilient mediators. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 302–319. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: BAR fault tolerance for cooperative services. In: Proc. 20th ACM Symp. Operating Systems Principles (SOSP 2005), pp. 45–58 (2005)

    Google Scholar 

  4. Barany, I.: Fair distribution protocols or how the players replace fortune. Mathematics of Operations Research 17, 327–340 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. 20th ACM Symp. Theory of Computing, pp. 1–10 (1988)

    Google Scholar 

  6. Ben-Porath, E.: Cheap talk in games with incomplete information. Journal of Economic Theory 108(1), 45–71 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blum, M.: Coin flipping by telephone a protocol for solving impossible problems. SIGACT News 15, 23–27 (1983)

    Article  Google Scholar 

  8. Boppana, R.B., Narayanan, B.O.: Perfect-information leader election with optimal resilience. SIAM Journal on Computing, 1304–1320 (2000)

    Google Scholar 

  9. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding in circular configurations of processes. Communications of the ACM 22(5), 281–283 (1979)

    Article  MATH  Google Scholar 

  10. Dani, V., Movahedi, M., Rodriguez, Y., Saia, J.: Scalable rational secret sharing. In: Proc. 30th ACM Symp. Principles of Distributed Computing, pp. 187–196 (2011)

    Google Scholar 

  11. Dodis, Y., Halevi, S., Rabin, T.: A cryptographic solution to a game theoretic problem. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 112–130. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Dolev, D.: The Byzantine generals strike again. Journal of Algorithms 3(1), 14–30 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM Journal on Computing 30(2), 391–437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dolev, D., Klawe, M., Rodeh, M.: An o(n logn) unidirectional distributed algorithm for extrema finding in a circle. Journal of Algorithms 3(3), 245–260 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous Byzantine agreement. SIAM Journal on Computing 26, 873–933 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Forges, F.: Universal mechanisms. Econometrica 58(6), 1341–1364 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard communication networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 419–436. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Gordon, D., Katz, J.: Rational secret sharing, revisited. In: SCN (Security in Communication Networks) 2006, pp. 229–241 (2006)

    Google Scholar 

  19. Halpern, J.Y., Teague, V.: Rational secret sharing and multiparty computation: extended abstract. In: Proc. 36th ACM Symp. Theory of Computing, pp. 623–632 (2004)

    Google Scholar 

  20. Heller, Y.: A minority-proof cheap-talk protocol (2005) (unpublished manuscript)

    Google Scholar 

  21. Izmalkov, S., Lepinski, M., Micali, S.: Perfect implementation. Games and Economic Behavior 71, 121–140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Katz, J., Koo, C.-Y.: On Expected Constant-Round Protocols for Byzantine Agreement. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Kreps, D.M., Wilson, R.B.: Sequential equilibria. Econometrica 50, 863–894 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Le Lann, G.: Distributed systems—towards a formal approach. In: IFIP Congress, vol. 7, pp. 155–160 (1977)

    Google Scholar 

  25. Lepinski, M., Micali, S., Peikert, C., Shelat, A.: Completely fair SFE and coalition-safe cheap talk. In: Proc. 23rd ACM Symp. on Principles of Distributed Computing, pp. 1–10 (2004)

    Google Scholar 

  26. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way function. In: Proc. 21st International Joint Conf. on Artificial Intelligence (IJCAI 2009), pp. 153–158 (2009)

    Google Scholar 

  27. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  28. Lysyanskaya, A., Triandopoulos, N.: Rationality and adversarial behavior in multi-party computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 180–197. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  29. McGrew, R., Porter, R., Shoham, Y.: Towards a general theory of non-cooperative computing. In: Theoretical Aspects of Rationality and Knowledge: Proc. Ninth Conf. (TARK 2003), pp. 59–51 (2003)

    Google Scholar 

  30. Moscibroda, T., Schmid, S., Wattenhofer, R.: When selfish meets evil: Byzantine players in a virus inoculation game. In: Proc. 25th ACM Symp. Principles of Distributed Computing, pp. 35–44 (2006)

    Google Scholar 

  31. Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology 4, 151–158 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Peterson, G.L.: An O(nlogn) unidirectional distributed algorithm for the circular extrema problem. ACM Trans. Progr. Lang. Syst. 4(4), 758–762 (1982)

    Article  MATH  Google Scholar 

  33. Saks, M.E.: A robust noncryptographic protocol for collective coin flipping. SIAM Journal on Discrete Mathemantics, 240–244 (1989)

    Google Scholar 

  34. Shoham, Y., Tennenholtz, M.: Non-cooperative computing: Boolean functions with correctness and exclusivity. Theoretical Computer Science 343(1-2), 97–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Urbano, A., Vila, J.E.: Computational complexity and communication: coordination in two-player games. Econometrica 70(5), 1893–1927 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Urbano, A., Vila, J.E.: Computationally restricted unmediated talk under incomplete information. Economic Theory 23(2), 283–320 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wong, E.L., Levy, I., Alvisi, L., Clement, A., Dahlin, M.: Regret freedom isn’t free. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 80–95. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abraham, I., Dolev, D., Halpern, J.Y. (2013). Distributed Protocols for Leader Election: A Game-Theoretic Perspective. In: Afek, Y. (eds) Distributed Computing. DISC 2013. Lecture Notes in Computer Science, vol 8205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41527-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41527-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41526-5

  • Online ISBN: 978-3-642-41527-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics