Advertisement

The Parameterized Complexity of Constraint Satisfaction and Reasoning

  • Stefan SzeiderEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7773)

Abstract

Parameterized Complexity is a new and increasingly popular theoretical framework for the rigorous analysis of NP-hard problems and the development of algorithms for their solution. The framework provides adequate concepts for taking structural aspects of problem instances into account. We outline the basic concepts of Parameterized Complexity and survey some recent parameterized complexity results on problems arising in Constraint Satisfaction and Reasoning.

References

  1. 1.
    Atserias, A., Bulatov, A., Dalmau, V.: On the power of k-consistency. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 279–290. Springer, Heidelberg (2007)Google Scholar
  2. 2.
    Betzler, N., Bredereck, R., Chen, J., Niedermeier, R.: Studies in computational aspects of voting- a parameterized complexity perspective. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 318–363. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels (extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010)Google Scholar
  6. 6.
    Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoret. Comput. Sci. 411(40–42), 3736–3756 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, J., Meng, J.: On parameterized intractability: hardness and completeness. Comput. J. 51(1), 39–59 (2008)CrossRefGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefGoogle Scholar
  9. 9.
    Dunne, P.E.: Computational properties of argument systems satisfying graph-theoretic constraints. Artif. Intell. 171(10–15), 701–729 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dvorák, W., Ordyniak, S., Szeider, S.: Augmenting tractable fragments of abstract argumentation. Artif. Intell. 186, 157–173 (2012)CrossRefzbMATHGoogle Scholar
  11. 11.
    Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fellows, M.R.: The lost continent of polynomial time: preprocessing and kernelization. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 276–277. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Fichte, J.K., Szeider, S.: Backdoors to tractable answer-set programming. Technical Report 1104.2788, Arxiv.org. Extended and updated version of a paper that appeared in the proceedings of IJCAI 2011, The 22nd International Joint Conference on Artificial Intelligence (2012)Google Scholar
  14. 14.
    Fichte, J.K., Szeider, S.: Backdoors to normality for disjunctive logic programs. In: des Jardins, M., Littman, M.L. (eds.) Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI 2013), Bellevue, Washington, USA, 14–18 July 2013, pp. 320–337. AAAI Press, California (2013)Google Scholar
  15. 15.
    Flum, J., Grohe, M.: Parameterized Complexity Theory, vol. XIV. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)Google Scholar
  16. 16.
    Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008, pp. 133–142. ACM, New York (2008)Google Scholar
  17. 17.
    Freuder, E.C.: Synthesizing constraint expressions. Commun. ACM 21(11), 958–966 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Freuder, E.C.: A sufficient condition for backtrack-bounded search. J. ACM 32(4), 755–761 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gaspers, S., Szeider, S.: Kernels for global constraints. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, pp. 540–545. AAAI Press, California (2011)Google Scholar
  20. 20.
    Gaspers, S., Szeider, S.: The parameterized complexity of local consistency. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 302–316. Springer, Heidelberg (2011)Google Scholar
  21. 21.
    Gaspers, S., Szeider, S.: Backdoors to satisfaction. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 287–317. Springer, Heidelberg (2012)Google Scholar
  22. 22.
    Giannopoulos, P., Knauer, C., Whitesides, S.: Parameterized complexity of geometric problems. Comput. J. 51(3), 372–384 (2008)CrossRefGoogle Scholar
  23. 23.
    Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: van Harmelen, F., Lifschitz, V. (eds.) Handbook of Knowledge Representation, vol. 3, Foundations of Artificial Intelligence, pp. 89–134. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  24. 24.
    Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge representation and reasoning. In: 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference. AAAI Press (2006)Google Scholar
  25. 25.
    Gottlob, G., Pichler, R., Wei, F.: Abduction with bounded treewidth: from theoretical tractability to practically efficient computation. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI 2008), Chicago, Illinois, USA, 13–17 July 2008, pp. 1541–1546. AAAI Press, California (2008)Google Scholar
  26. 26.
    Gramm, J., Nickelsen, A., Tantau, T.: Fixed-parameter algorithms in phylogenetics. Comput. J. 51(1), 79–101 (2008)CrossRefGoogle Scholar
  27. 27.
    Gutin, G., Yeo, A.: Constraint satisfaction problems parameterized above or below tight bounds: a survey. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 257–286. Springer, Heidelberg (2012)Google Scholar
  28. 28.
    Hlinený, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Comput. J. 51(3), 326–362 (2008)CrossRefGoogle Scholar
  29. 29.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kim, E.J., Ordyniak, S., Szeider, S.: Algorithms and complexity results for persuasive argumentation. Artif. Intell. 175, 1722–1736 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Krokhin, A., Marx, D.: On the hardness of losing weight. ACM Trans. Algorithm 8(2), 19 (2012)MathSciNetGoogle Scholar
  32. 32.
    Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization – preprocessing with a guarantee. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 129–161. Springer, Heidelberg (2012)Google Scholar
  33. 33.
    Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8, 99–118 (1977)CrossRefzbMATHGoogle Scholar
  34. 34.
    Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Mahajan, M., Raman, V., Sikdar, S.: Parameterizing MAX SNP problems above guaranteed values. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 38–49. Springer, Heidelberg (2006)Google Scholar
  36. 36.
    Montanari, U.: Networks of constraints: fundamental properties and applications to picture processing. Inf. Sci. 7, 95–132 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2006)CrossRefGoogle Scholar
  38. 38.
    Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. Acta Informatica 44(7–8), 509–523 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic cnf formulas. Theor. Comput. Sci. 481, 85–99 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Pfandler, A., Rümmele, S., Szeider, S.: Backdoors to absuction. In: Proceedings of the 23th International Joint Conference on Artificial Intelligence (IJCAI 2013), Beijing, China, 3–9 August 2013 (2013) (to appear)Google Scholar
  41. 41.
    Pichler, R., Rümmele, S., Szeider, S., Woltran, S.: Tractable answer-set programming with weight constraints: bounded treewidth is not enough. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference (KR 2010), Toronto, Ontario, Canada, 9–13 May 2010. AAAI Press, California (2010)Google Scholar
  42. 42.
    Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom. Reason. 42(1), 77–97 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Samer, M., Szeider, S.: Tractable cases of the extended global cardinality constraint. Constraints 16(1), 1–24 (2009)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discret. Algorithms 8(1), 50–64 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. J. Comput. Syst. Sci. 76(2), 103–114 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Sloper, C., Telle, J.A.: An overview of techniques for designing parameterized algorithms. Comput. J. 51(1), 122–136 (2008)CrossRefGoogle Scholar
  47. 47.
    Szeider, S.: Limits of preprocessing. Proceedings of the twenty-fifth conference on artificial intelligence, AAAI 2011, pp. 93–98. AAAI Press, California (2011)Google Scholar
  48. 48.
    Szeider, S.: The parameterized complexity of \(k\)-flip local search for SAT and MAX SAT. Discrete Optim. 8(1), 139–145 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Vardi, M.Y.: On P, NP, and computational complexity. Commun. ACM 53(11), 5 (Nov. 2010)Google Scholar
  50. 50.
    Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, IJCAI 2003, pp. 1173–1178. Morgan Kaufmann, San Francisco (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Vienna University of TechnologyViennaAustria

Personalised recommendations