A Prototype of a Knowledge-Based Programming Environment

  • Stef De PooterEmail author
  • Johan Wittocx
  • Marc Denecker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7773)


This paper presents a proposal for a knowledge-based programming environment. Within this environment, declarative background knowledge, procedures, and concrete data are represented in suitable languages and combined in a flexible manner, which leads to a highly declarative programming style. We illustrate our approach with an example application and report on our prototype implementation.


Model Check Background Knowledge Classical Logic Theorem Prover Description Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)Google Scholar
  3. 3.
    Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: theory and implementation. In: de la Banda, M.G., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Denecker, M., Calabuig, Á.C., Bruynooghe, M., Arieli, O.: Towards a logical reconstruction of a theory for locally closed databases. ACM Trans. Database Syst. 35(3), 22:1–22:60 (2010)CrossRefGoogle Scholar
  5. 5.
    Denecker, M., De Schreye, D., Willems, Y.: Terms in Logic programs: a problem with their semantics and its effect on the programming methodology. CCAI: J. Integr. Study Artif. Intell., Cogn. Sci. Appl. Epistemology 7(3–4), 363–383 (1990)Google Scholar
  6. 6.
    Denecker, M., Ternovska, E.: A logic of nonmonotone inductive definitions. ACM Trans. Comput. Logic (TOCL) 9(2), 14:1–14:52 (2008)MathSciNetGoogle Scholar
  7. 7.
    Denecker, M., Vennekens, J.: Building a knowledge base system for an integration of logic programming and classical logic. In: Pontelli, E., Garcia de la Banda, M. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 71–76. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Fitting, M.: First-order logic and automated theorem proving, 2nd edn. Springer-Verlag New York Inc., Secaucus, NJ, USA (1996)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide to gringo, clasp, clingo, and iclingo. (2010)
  10. 10.
  11. 11.
    Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: Lua - an extensible extension language. Softw.: Pract. Experience 26(6), 635–652 (1996)CrossRefGoogle Scholar
  12. 12.
    Ierusalimschy, R., Henrique de Figueiredo, L., Celes, W.: Passing a language through the eye of a needle. Queue 9, 20:20–20:29 (2011)CrossRefGoogle Scholar
  13. 13.
    Mariën, M., Wittocx, J., Denecker, M., Bruynooghe, M.: SAT(ID): Satisfiability of propositional logic extended with inductive definitions. In: Büning, H.K., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 211–224. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de Banda, M.G., Wallace, M.: The design of the Zinc modelling language. Constraints 13(3), 229–267 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Michel, L., Van Hentenryck, P.: The comet programming language and system. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 881–881. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Mitchell, D.G., Ternovska, E., Hach, F., Mohebali, R.: Model expansion as a framework for modelling and solving search problems. Technical Report TR 2006–24, Simon Fraser University, Canada (2006)Google Scholar
  17. 17.
    Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of logic programs with aggregates. Theory Pract. Logic Program. (TPLP) 7(3), 301–353 (2007)Google Scholar
  18. 18.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Van Roy, P. (ed.): MOZ 2004. LNCS, vol. 3389. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Vlaeminck, H., Vennekens, J., Denecker, M.: A logical framework for configuration software. In: Porto, A., Javier López-Fraguas, F. (eds.) PPDP, pp. 141–148. ACM, New York (2009)CrossRefGoogle Scholar
  21. 21.
    Wittocx, J., Denecker, M., Bruynooghe, M.: Constraint propagation for extended first-order logic. In: CoRR, abs/1008.2121 (2010)Google Scholar
  22. 22.
    Wittocx, J., Mariën, M., Denecker, M.: The IDP system: a model expansion system for an extension of classical logic. In: Denecker, M. (ed.) LaSh, pp. 153–165 (2008)Google Scholar
  23. 23.
    Wittocx, J., Mariën, M., Denecker, M.: Grounding FO and FO(ID) with bounds. J. Artif. Intell. Res. 38, 223–269 (2010)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Computer ScienceK.U. LeuvenLeuvenBelgium

Personalised recommendations