Abstract
This chapter presents a review and systematic comparison of the state of the art on crowd video analysis. The rationale of our review is justified by a recent increase in intelligent video surveillance algorithms capable of analysing automatically visual streams of very crowded and cluttered scenes, such as those of airport concourses, railway stations, shopping malls and the like. Since the safety and security of potentially very crowded public spaces have become a priority, computer vision researchers have focused their research on intelligent solutions. The aim of this chapter is to propose a critical review of existing literature pertaining to the automatic analysis of complex and crowded scenes. The literature is divided into two broad categories: the macroscopic and the microscopic modelling approach. The effort is meant to provide a reference point for all computer vision practitioners currently working on crowd analysis. We discuss the merits and weaknesses of various approaches for each topic and provide a recommendation on how existing methods can be improved.
Keywords
- Unstructured Crowded Scenes
- Crowd Analysis
- Typical Motion Patterns
- Sink Path
- Optical Flow Clustering
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Aggarwal, J.K., Cai, Q.: Human motion analysis: a review. Comput. Vis. Image Underst. 73(3), 428–440 (1999)
Ali, I., Dailey, M.N.: Multiple human tracking in high-density crowds. In: Advanced Concepts in Intelligent Vision Systems, pp. 540–549 (2009)
Ali, S., Shah, M.: A Lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Minneapolis, Florida, pp. 1–6. IEEE, New York (2007)
Ali, S., Shah, M.: Floor fields for tracking in high density crowd scenes. In: Proceedings of European Conference on Computer Vision, Marseille, France, pp. 1–14. Springer, Berlin (2008)
Alper, Y., Omar, J., Mubarak, S.: Object tracking: a survey. ACM Comput. Surv. 38(4), 13–58 (2006)
Andrade, E., Fisher, R.: Simulation of crowd problems for computer vision. In: Proceedings of 19th International Conference on Pattern Recognition, vol. 3, pp. 71–80 (2005)
Andrade, E., Fisher, R., Blunsden, S.: Modelling crowd scenes for event detection. In: Proceedings of 19th International Conference on Pattern Recognition, vol. 1, pp. 175–178 (2006)
Andriyenko, A., Schindler, K.: Multi-target tracking by continuous energy minimization. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, pp. 1265–1272. IEEE, New York (2011)
Antonini, G., Martinez, S.V., Bierlaire, M., Thiran, J.P.: Behavioral priors for detection and tracking of pedestrians in video sequences. Int. J. Comput. Vis. 69(2), 159–180 (1998)
Bai, K.: Particle filter tracking with mean shift and joint probability data association. In: 2010 International Conference on Image Analysis and Signal Processing (IASP), pp. 607–612. IEEE, New York (2010)
Barron, J., Fleet, D.J., Beauchemin, S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)
BenAbdelkader, C., Cutler, R., Nanda, H., Davis, L.: Eigengait: motion-based recognition of people using image self-similarity. Technical report (2001)
Boltes, M., Seyfried, A.: Collecting pedestrian trajectories. Neurocomputing 100, 127–133 (2013)
Cai, Y., Pietikäinen, M.: Person re-identification based on global color context. In: Asian Conference on Computer Vision 2010 Workshops (2011)
Cai, Y., de Freitas, N., Little, J.J.: Robust visual tracking for multiple targets. In: Proceedings of Eighth European Conference on Computer Vision, vol. 3954, pp. 107–118. IEEE, New York (2006)
Chen, A.h., Yang, B.q, Chen, Z.g.: A timely occlusion detection based on mean shift algorithm. In: Deng, W. (ed.) Future Control and Automation. Lecture Notes in Electrical Engineering, vol. 173, pp. 51–56. Springer, Berlin (2012)
Dexter, E., Pérez, P., Laptev, I.: Multi-view synchronization of human actions and dynamic scenes. In: Proceedings of the British Machine Vision Conference 2009, British Machine Vision Association, pp. 122.1–122.11 (2009)
Dockstader, S.L., Tekalp, A.M.: Multiple camera tracking of interacting and occluded human motion. Proc. IEEE 89(10), 1441–1455 (2001)
French, A., Naeem, A., Dryden, I., Pridmore, T.: Using social effects to guide tracking in complex scenes. In: Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 212–217 (2007)
Gilbert, A., Bowden, R.: Multi person tracking within crowded scenes. In: Proceedings of Workshop on Human Motion, pp. 166–179 (2007)
Haselhoff, A., Hoehmann, L., Nunn, C., Meuter, M., Kummert, A.: On occlusion-handling for people detection fusion in multi-camera networks. In: Dziech, A., Czyżewski, A. (eds.) Multimedia Communications, Services and Security. Communications in Computer and Information Science, vol. 149, pp. 113–119. Springer, Berlin (2011)
Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)
Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)
Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 34(3), 334–352 (2004)
Hu, W., Xiao, X., Fu, Z., Dan, X., Tan, T., Steve, M.: A system for learning statistical motion patterns. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1450–1464 (2006)
Hu, M., Ali, S., Shah, M.: Detecting global motion patterns in complex videos. In: Proceedings of International Conference on Pattern Recognition, Tempa, Florida, pp. 1–5. IEEE, New York (2008)
Hu, M., Ali, S., Shah, M.: Learning motion patterns in crowded scenes using motion flow field. In: Proceedings of International Conference on Pattern Recognition, Tempa, Florida, pp. 1–5. IEEE, New York (2008)
Hu, N., Bouma, H., Worring, M.: Tracking individuals in surveillance video of a high-density crowd. In: Proceedings of SPIE, vol. 8399, p. 839909 (2012)
Isard, M., Blake, A.: CONDENSATION conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998)
Jacques Junior, J.C.S., Musse, S.R., Jung, C.R.: Crowd analysis using computer vision techniques: a survey. IEEE Signal Process. Mag. (September), 66–77 (2010)
Jiang, Y., Zhang, P., Wong, S., Liu, R.: A higher-order macroscopic model for pedestrian flows. Phys. A, Stat. Mech. Appl. 389(21), 4623–4635 (2010)
Jo, H., Chug, K., Sethi, R.J., Rey, M.: A review of physics-based methods for group and crowd analysis in computer vision. J. Postdr. Res. 1(1), 4–7 (2013)
Johnson, N., Hogg, D.: Learning the distribution of object trajectories for event recognition. Image Vis. Comput. 14(8), 583–592 (1996)
Junejo, I., Dexter, E., Laptev, I., Pérez, P.: Cross-view action recognition from temporal self-similarities. In: Proceedings of the European Conference on Computer Vision 2008 (2008)
Junejo, I.N., Dexter, E., Laptev, I., Pérez, P.: View-independent action recognition from temporal self-similarities. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 172–185 (2011)
Khan, S.M., Shah, M.: A multi-view approach to tracking people in dense crowded scenes using a planar homography constraint. In: Proceedings of Workshop on Human Motion, Graz, Austria, pp. 133–146 (2006)
Khan, S., Shah, M.: Tracking multiple occluding people by localizing on multiple scene planes. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 505–519 (2009)
Khan, S.M., Shah, M.: Tracking multiple occluding people by localizing on multiple scene planes. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 505–519 (2009)
Khan, Z., Balch, T., Dellaert, F.: MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Trans. Pattern Anal. Mach. Intell. 27(11), 1805–1918 (2005)
Kim, J., Grauman, K.: Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2921–2928 (2009)
Kratz, L., Nishino, K.: Spatio-temporal motion pattern modelling of extremely crowded scenes. In: The 1st International Workshop on Machine Learning for Vision-Based Motion Analysis, Marseille, France (2008)
Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, Maimi Beach, Florida, pp. 1446–1453 (2009)
Kratz, L., Nishino, K.: Tracking with local spatio-temporal motion patterns in extremely crowded scenes. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, San Francisco, USA, pp. 693–700 (2010)
Kwak, S., Nam, W., Han, B., Han, J.H.: Learning occlusion with likelihoods for visual tracking. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1551–1558 (2011)
Lee, L., Romano, R., Stein, G.: Monitoring activities from multiple video streams: establishing a common coordinate frame. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 758–767 (2000)
Li, M., Zhang, Z., Huang, K., Tan, T.: Rapid and robust human detection and tracking based on omega-shape features. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 2545–2548 (2009)
Li, J., Lu, X., Ding, L., Lu, H.: Moving target tracking via particle filter based on color and contour features. In: 2010 2nd International Conference on Information Engineering and Computer Science (ICIECS), pp. 1–4. IEEE, New York (2010)
Luber, M., Stork, J.a., Tipaldi, G.D., Arras, K.O.: People tracking with human motion predictions from social forces. In: 2010 IEEE International Conference on Robotics and Automation, pp. 464–469. IEEE, New York (2010)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of Image Understanding Workshop, pp. 121–130 (1981)
Ma, Y., Cisar, P.: Activity representation in crowd. In: Proceedings of the 2008 Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, Florida, USA, pp. 107–116. Springer, Berlin (2008)
Ma, L., Liu, J., Wang, J., Cheng, J., Lu, H.: A improved silhouette tracking approach integrating particle filter with graph cuts. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1142–1145. IEEE, New York (2010)
Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, San Francisco, pp. 1975–1981 (2010)
Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, Maimi Beach, Florida, pp. 935–942. IEEE, New York (2009)
Michel, B., Gianluca, A., Mats, W.: Behavioural dynamics for pedestrians. In: Lecture Notes in Computer Science, pp. 1–18 (2003)
Mittal, A., Davis, L.S.: M2Tracker: a multi-view approach to segmenting and tracking people in a cluttered scene. Int. J. Comput. Vis. 51(3), 189–203 (2003)
Moore, B.E., Ali, S., Mehran, R., Shah, M.: Visual crowd surveillance through a hydrodynamics lens. Commun. ACM 54(12), 64–73 (2011)
Ni, Z., Sunderrajan, S., Rahimi, A., Manjunath, B.: Distributed particle filter tracking with online multiple instance learning in a camera sensor network. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 37–40. IEEE, New York (2010)
Okuma, K., Taleghani, A., Freitas, N.D., Little, J.J., Lowe, D.G.: A boosted particle filter: multitarget detection and tracking. In: Proceedings of Eighth European Conference on Computer Vision, pp. 28–39. IEEE, New York (2004)
Qi, Z., Ting, R., Husheng, F., Jinlin, Z.: Particle filter object tracking based on Harris-SIFT feature matching. Proc. Eng. 29, 924–929 (2012)
Rani, M., Arumugam, G.: An efficient gait recognition system for human identification using modified ICA. Int. J. Comput. Sci. Inf. Technol. 2(1), 55–67 (2010)
Reddy, V., Sanderson, C., Lovell, B.: Improved anomaly detection in crowded scenes via cell-based analysis of foreground speed, size and texture. In: MLvMA Workshop, IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, pp. 57–63. IEEE, New York (2011)
Revathi, A., Kumar, D.: A review of human activity recognition and behaviour understanding in video surveillance. Comput. Sci. Inf. Technol. 2, 375–384 (2012)
Rodriguez, M., Ali, S., Kanade, T.: Tracking in unstructured crowded scenes. In: Proceedings of IEEE International Conference on Computer Vision, Kyoto, Japan, pp. 1389–1396. IEEE, New York (2009)
Saleemi, I., Hartung, L., Shah, M.: Scene understanding by statistical modeling of motion patterns. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, San Francisco, pp. 2069–2076 (2010)
Scott, S.: A system for tracking and recognizing multiple people with multiple camera. Technical report GIT-GVU-98-25, Georgia Institute of Technology (1998)
Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE, New York (2007)
Shu-hong, C., Chun-hai, H.: Particle filter tracking algorithm based on multi-information fusion. In: 2009 International Conference on Information Engineering and Computer Science, ICIECS 2009, pp. 1–4. IEEE, New York (2009)
Sodemann, A.A., Ross, M.P., Borghetti, B.J.: A review of anomaly detection in automated surveillance. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 42(6), 1257–1272 (2012)
Sugano, H., Miyamoto, R.: Parallel implementation of pedestrian tracking using multiple cues on GPGPU. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 900–906. IEEE, New York (2009)
Tang, S.L., Kadim, Z., Liang, K.M., Lim, M.K.: Hybrid blob and particle filter tracking approach for robust object tracking. Proc. Comput. Sci. 1(1), 2549–2557 (2010)
Thida, M., Eng, H.L., Monekosso, D.N., Remagnino, P.: Learning video manifold for segmenting crowd events and abnormality detection. In: Proceedings of 10th Asian Conference on Computer Vision, pp. 439–449. Springer, Berlin (2010)
Vezzani, R., Grana, C., Cucchiara, R.: Probabilistic people tracking with appearance models and occlusion classification: the ad-hoc system. Pattern Recognit. Lett. 32(6), 867–877 (2011)
Vishwakarma, S., Agrawal, A.: A survey on activity recognition and behaviour understanding in video surveillance. Vis. Comput. (September) (2012)
Walk, S., Majer, N., Schindler, K., Schiele, B.: New features and insights for pedestrian detection. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1030–1037. IEEE, New York (2010)
Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. Pattern Recognit. 36(3), 585–601 (2003)
Wang, X., Tieu, K., Grimson, E.: Learning semantic scene models by trajectory analysis. In: Proceedings of European Conference on Computer Vision, vol. 3, pp. 110–123 (2006)
Wang, P., Li, W., Zhu, W., Qiao, H.: Object tracking with serious occlusion based on occluder modeling. In: 2012 International Conference on Mechatronics and Automation (ICMA) pp. 1960–1965 (2012)
Wu, P., Kong, L., Zhao, F., Li, X.: Particle filter tracking based on color and SIFT features. In: 2008 International Conference on Audio, Language and Image Processing, pp. 932–937. IEEE, New York (2008)
Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, pp. 2054–2060. IEEE, New York (2010)
Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, pp. 1345–1352. IEEE, New York (2011)
Yang, Y., Liu, J., Shah, M.: Video scene understanding using multi-scale analysis. In: Proceedings of IEEE International Conference on Computer Vision, Kyoto, Japan, pp. 1669–1676. IEEE, New York (2009)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4) (2006)
Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L.Q.: Crowd analysis: a survey. Mach. Vis. Appl. 19(5–6), 345–357 (2008)
Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via structured multi-task sparse learning. Int. J. Comput. Vis. 1–17 (2012)
Zhang, C., Xu, J., Beaugendre, A., Goto, S.: A klt-based approach for occlusion handling in human tracking. In: Picture Coding Symposium (PCS), 2012, pp. 337–340 (2012)
Zhong, Q., Qingqing, Z., Tengfei, G.: Moving object tracking based on codebook and particle filter. Proc. Eng. 29, 174–178 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Thida, M., Yong, Y.L., Climent-Pérez, P., Eng, Hl., Remagnino, P. (2013). A Literature Review on Video Analytics of Crowded Scenes. In: Atrey, P., Kankanhalli, M., Cavallaro, A. (eds) Intelligent Multimedia Surveillance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41512-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-41512-8_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41511-1
Online ISBN: 978-3-642-41512-8
eBook Packages: Computer ScienceComputer Science (R0)