Skip to main content

Effects of Noise on Acoustic Signal Production in Marine Mammals

Part of the Animal Signals and Communication book series (ANISIGCOM,volume 2)

Abstract

Marine mammals rely on sound for communication, orientation, and locating prey. Baleen whales use low-frequency sound, to frequencies below 10 Hz, to communicate over ranges of tens to hundreds of km. Toothed whales use clicks at center frequencies of 10−160 kHz to echolocate on targets at ranges of tens to a few hundreds of meters. Most marine mammals have sensitive enough hearing that they are limited by noise rather than the sensitivity of their auditory systems. Ocean noise is dominated by sounds of geological activity below about 20 Hz, by wind and waves above 200 Hz, but in the 20−200 Hz band, the dominant source of sound in the sea stems from a human source: the propulsion of ships. Other industrial and military activities also introduce very powerful, transient sounds into the oceans. As noise varies, the effective range for communication and echolocation would vary significantly if marine mammals did not have mechanisms to compensate for increased noise. Marine mammals have been shown to be able to compensate for noise by increasing the level of their own calls, by shifting their signal frequencies out of a noise band, by making their signals longer or more redundant, or by waiting to signal until noise is reduced. The mechanisms that involve modifying vocal output based upon auditory input have similarities with vocal production learning, and compensation for noise may have led to adaptations that close the neural loop between auditory input and vocal production. All of these mechanisms improve detection of signals in noise, but each is likely to incur costs, and it is not known whether they fully compensate for the effects of noise. At some levels of anthropogenic noise, animals leave an area near the source, reducing the amount of habitat available. As anthropogenic sound continues to increase in the ocean, the requirement for suitable conditions for communication means that effects of noise are one of the factors that must be monitored and regulated to maintain suitable environments for marine mammals.

Keywords

  • Marine Mammal
  • Ambient Noise
  • Killer Whale
  • Bottlenose Dolphin
  • Sperm Whale

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-41494-7_9
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-41494-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4

References

  • Aguilar de Soto N, Madsen PT, Tyack P, Arranz P, Marrero J, Fais A, Revelli E, Johnson M (2012) No shallow talk: cryptic strategy in the vocal communication of Blainville’s beaked whales. Mar Mammal Sci 28:E75–E92

    Google Scholar 

  • Andrew RK, Howe BM, Mercer JA (2002) Ocean ambient sound: comparing the 1960s with the 1990s for a receiver off the California coast. Acoust Res Lett 3:65–70

    CrossRef  Google Scholar 

  • Au WWL (1993) The sonar of dolphins. Springer, Berlin

    CrossRef  Google Scholar 

  • Au WWL, Carder DA, Penner RH, Scronce BL (1985) Demonstration of adaptation in beluga whale echolocation signals. J Acoust Soc Am 77:726–730

    CAS  PubMed  CrossRef  Google Scholar 

  • Au WWL, Pawloski JL, Nachtigall P, Blonz M, Gisiner RC (1995) Echolocation signals and transmission beam pattern of a false killer whale (Pseudorca crassidens). J Acoust Soc Am 98:51–59

    CAS  PubMed  CrossRef  Google Scholar 

  • Au WWL, Kastelein RA, Rippe T, Schooneman NM (1999) Transmission beam pattern and echolocation signals of a harbor porpoise (Phocoena phocoena). J Acoust Soc Am 106:3699

    Google Scholar 

  • Brackenbury JH (1979) Power capabilities of the avian sound-producing system. J Exp Biol 78:163–166

    Google Scholar 

  • Branstetter BK, Moore PW, Finneran JJ, Tormey MN, Aihara H (2012) Directional properties of bottlenose dolphin (Tursiops truncatus) clicks, burst-pulse and whistle sounds. J Acoust Soc Am 131:1613–1621

    PubMed  CrossRef  Google Scholar 

  • Brumm H (2006) Signalling through acoustic windows: nightingales avoid interspecific competition by short-term adjustment of song timing. J Comp Physiol A 192:1279–1285

    CrossRef  Google Scholar 

  • Brumm H (2010) Anthropogenic noise: implications for conservation. In: Breed MD, Moore J (eds) Encyclopedia of animal behavior. Academic, Oxford, p. 89–93

    Google Scholar 

  • Brumm H, Zollinger SA (2011) The evolution of the Lombard effect: 100 years of psychoacoustic research. Behaviour 148:1173–1198

    CrossRef  Google Scholar 

  • Brumm H, Voss K, Köllmer I, Todt D (2004) Acoustic communication in noise: regulation of call characteristics in a New World monkey. J Exp Biol 207:443–448

    PubMed  CrossRef  Google Scholar 

  • Buckstaff KC (2004) Effects of watercraft noise on the acoustic behavior of bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, Florida. Mar Mammal Sci 20:709–725

    CrossRef  Google Scholar 

  • Cade WH, Otte D (1982) Alternation calling and spacing patterns in the Weld cricket Acanthogryllus fortipes (Orthopterea; Gryllidae). Can J Zool 60:2916–2920

    CrossRef  Google Scholar 

  • Cato DH, McCauley RD (2001) Ocean ambient noise from anthropogenic and natural sources in the context of marine mammal acoustics. J Acoust Soc Am 110:2751–2751

    CrossRef  Google Scholar 

  • Clausen KT, Wahlberg M, Beedholm K, Deruiter S, Madsen PT (2010) Click communication in harbor porpoises Phocoena phocoena. Bioacoustics 20:1–28

    CrossRef  Google Scholar 

  • Cranford TW (2000) In search of impulse sound sources in odontocetes. In: Au WWL, Fay RR, Popper AN (eds) Hearing by Whales and Dolphins. Springer Handbook of Auditory Research, vol 12. Springer, Berlin, pp 109–155

    Google Scholar 

  • Dawson SM (1991) Clicks and communication: the behavioural and social contexts of Hector’s dolphin vocalizations. Ethology 88:265–276

    CrossRef  Google Scholar 

  • Di Iorio L, Clark CW (2010) Exposure to seismic survey alters blue whale acoustic communication. Biol Lett 6:51–54

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Egnor SER, Wickelgren JG, Hauser MD (2007) Tracking silence: adjusting vocal production to avoid acoustic interference. J Comp Physiol A 193:477–483

    CrossRef  Google Scholar 

  • Ficken RW, Ficken MS, Hailman JP (1974) Temporal pattern shifts to avoid acoustic interference in singing birds. Science 183:762–763

    CAS  PubMed  CrossRef  Google Scholar 

  • Ford JKB (1989) Acoustic behavior of resident killer whales (Orcinus orca) off Vancouver Island, British Columbia. Can J Zool 67:727–745

    CrossRef  Google Scholar 

  • Ford JKB (1991) Vocal traditions among resident killer whales Orcinus orca in coastal waters of British Columbia. Can J Zool 69:1454–1483

    CrossRef  Google Scholar 

  • Fripp D, Owen C, Quintana-Rizzo E, Shapiro A, Buckstaff K, Jankowski K, Wells R, Tyack P (2005) Bottlenose dolphin (Tursiops truncatus) calves appear to model their signature whistles on the signature whistles of community members. Anim Cog 8:17–26

    CrossRef  Google Scholar 

  • Fristrup KM, Hatch LT, Clark CW (2003) Variation in humpback whale (Megaptera novaeangliae) song length in relation to low-frequency sound broadcasts. J Acoust Soc Am 113:3411–3424

    PubMed  CrossRef  Google Scholar 

  • Gil D, Gahr M (2002) The honesty of bird song: multiple constraints for multiple traits. Trends Ecol Evol 17:133–141

    CrossRef  Google Scholar 

  • Greenfield MD (1994) Cooperation and conflict in the evolution of signal interactions. Ann Rev Ecol Syst 25:97–126

    CrossRef  Google Scholar 

  • Hall ML, Illes A, Vehrenkamp SL (2006) Overlapping signals in banded wrens: long-term effects of prior experience on males and females. Behav Ecol 17:260–269

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Janik VM (2000) Source levels and the estimated active space of bottlenose dolphin Tursiops truncatus whistles in the Moray Firth, Scotland. J Comp Physiol A 186:673–680

    CAS  PubMed  CrossRef  Google Scholar 

  • Janik VM (2005) Acoustic communication networks in marine mammals. In: McGregor PK (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 390–415

    CrossRef  Google Scholar 

  • Janik VM (2009) Acoustic communication in delphinids. Adv Study Behav 40:123–157

    CrossRef  Google Scholar 

  • Janik VM, Slater PJB (1997) Vocal learning in mammals. Adv Study Behav 26:59–99

    CrossRef  Google Scholar 

  • Janik VM, Slater PJB (2000) The different roles of social learning in vocal communication. Anim Behav 60:1–11

    PubMed  CrossRef  Google Scholar 

  • Janik VM, Sayigh LS, Wells RS (2006) Signature whistle contour shape conveys identity information to bottlenose dolphins. Proc Natl Acad Sci USA 103:8293–8297

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Johnson MP, Tyack PL (2003) A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J Ocean Eng 28:3–12

    CrossRef  Google Scholar 

  • Johnson MP, Madsen PT, Zimmer WMX, Aguilar de Soto N, Tyack PL (2004) Beaked whales echolocate on prey. Proc Roy Soc Lond B 271:S383−S386

    Google Scholar 

  • Johnson M, Madsen PT, Zimmer WMX, Aguilar de Soto N, Tyack PL (2006) Foraging Blainville’s beaked whales (Mesoplodon densirostris) produce distinct click types matched to different phases of echolocation. J Exp Biol 209:5038−5050

    Google Scholar 

  • Johnson M, Hickmott LS, Soto NA, Madsen PT (2008) Echolocation behaviour adapted to prey in foraging Blainville's beaked whale (Mesoplodon densirostris). Proc Roy Soc B 275:133–139

    Google Scholar 

  • Kloepper LN, Nachtigall PE, Donahue MJ, Breese M (2012) Active echolocation beam focusing in the false killer whale, Pseudorca crassidens. J Exp Biol 215:1306–1312

    PubMed  CrossRef  Google Scholar 

  • Lammers MO, Au WWL (2003) Directionality of the whistles of Hawaiian spinner dolphins (Stenella longirostris): a signal feature to cue direction of movement? Mar Mammal Sci 19:249–264

    CrossRef  Google Scholar 

  • Lane H, Tranel R (1971) The Lombard sign and the role of hearing in speech. J Speech Hear Res 14:677–709

    Google Scholar 

  • Lengagne T, Aubin T, Lauga J, Jouventin P (1999) How do king penguins (Aptenodytes patagonicus) apply the mathematical theory of information to communicate in windy conditions? Proc Roy Soc Lond B 266:1623–1628

    CrossRef  Google Scholar 

  • Lesage V, Barrette C, Kingsley MCS, Sjare B (1999) The effect of vessel noise on the vocal behavior of belugas in the St. Lawrence River estuary. Canada Mar Mammal Sci 15:65–84

    CrossRef  Google Scholar 

  • Lombard E (1911) Le signe de l’élévation de la voix. Annales des maladies de l’oreille, du larynx du nez et du pharynx 37:101–119

    Google Scholar 

  • Madsen PT, Johnson M, Aguilar de Soto NA, Zimmer WMX, Tyack PL (2005a) Biosonar performance of foraging beaked whales (Mesoplodon densirostris). J Exp Biol 208:181−194

    Google Scholar 

  • Madsen PT, Carder DA, Beedholm K, Ridgway S (2005b) Porpoise clicks from a sperm whale nose: convergent evolution of toothed whale echolocation clicks? Bioacoustics 15:195–206

    CrossRef  Google Scholar 

  • Madsen PT, Wilson M, Johnson M, Hanlon RT, Bocconcelli N, Aguilar de Soto NA, Tyack PL (2007) Clicking for calamari: toothed whales can echolocate squid (Loligo pealeii)? Aquat Biol 1:141−150

    Google Scholar 

  • Manabe K, Sadr EI, Dooling RJ (1998) Control of vocal intensity in budgerigars (Melopsittacus undulatus): Differential reinforcement of vocal intensity and the Lombard effect. J Acoust Soc Am 103:1190–1198

    CAS  PubMed  CrossRef  Google Scholar 

  • Mate BR, Gisiner R, Mobley J (1998) Local and migratory movements of Hawaiian humpback whales tracked by satellite telemetry. Can J Zool 76:863–868

    CrossRef  Google Scholar 

  • McDonald MA, Hildebrand JA, Wiggins SM (2006) Increases in deep ocean ambient noise in the Northeast Pacific west of San Nicolas Island, California. J Acoust Soc Am 120:711–718

    PubMed  CrossRef  Google Scholar 

  • Miksis-Olds JL (2006) Manatee response to environmental noise levels. University of Rhode Island, Kingston, Ph.D. dissertation

    Google Scholar 

  • Miller PJO (2002) Mixed-directionality of killer whale stereotyped calls: a direction of movement cue? Behav Ecol Sociobiol 52:262–270

    CrossRef  Google Scholar 

  • Miller PJO (2006) Diversity in sound pressure levels and estimated active space of killer whale sounds. J Comp Physiol A 192:449–459

    CrossRef  Google Scholar 

  • Miller PJO, Biassoni N, Samuels A, Tyack PL (2000) Whale songs lengthen in response to sonar. Nature 405:903

    CAS  PubMed  CrossRef  Google Scholar 

  • Møhl B, Wahlberg M, Madsen PT, Heerfordt A, Lund A (2003) The monopulsed nature of sperm whale clicks. J Acoust Soc Am 114:1143–1154

    PubMed  CrossRef  Google Scholar 

  • Morisaka T, Connor RC (2007) Predation by killer whales (Orcinus orca) and the evolution of whistle loss and narrow-band high frequency clicks in odontocetes. J Evol Biol 20:1439–1458

    CAS  PubMed  CrossRef  Google Scholar 

  • Morton AB, Symonds HK (2002) Displacement of Orcinus orca (L.) by high amplitude sound in British Columbia. Canada ICES J Mar Sci 59:71–80

    CrossRef  Google Scholar 

  • Northrop J, Cummings WC, Thompson PO (1968) 20 Hz signals observed in the central Pacific. J Acoust Soc Am 43:383–384

    CrossRef  Google Scholar 

  • Parks SE, Clark CW, Tyack PL (2007) Short and long-term changes in right whale calling behavior: the potential effects of noise on acoustic communication. J Acoust Soc Am 122:3725–3731

    PubMed  CrossRef  Google Scholar 

  • Parks SE, Johnson M, Nowacek D, Tyack PL (2011) Individual right whales call louder in increased environmental noise. Biol Lett 7:33–35

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Payne RS, Webb D (1971) Orientation by means of long range acoustic signalling in baleen whales. Annal NY Acad Sci 188:110–141

    CAS  CrossRef  Google Scholar 

  • Pick HLJ, Siegel GM, Fox PW, Gerber SR, Kearney JK (1989) Inhibiting the Lombard effect. J Acoust Soc Am 85:895–900

    Google Scholar 

  • Potash LM (1972) Noise-induced changes in calls of the Japanese quail. Psychon Sci 26:252–254

    CrossRef  Google Scholar 

  • Quick NJ, Janik VM (2008) Whistle rates of wild bottlenose dolphins: influences of group size and behavior. J Comp Psychol 122:305–311

    PubMed  CrossRef  Google Scholar 

  • Rankin S, Oswald J, Barlow J, Lammers M (2007) Patterned burst-pulse vocalizations of the northern right whale dolphin, Lissodelphis borealis. J Acoust Soc Am 121:1213–1218

    PubMed  CrossRef  Google Scholar 

  • Rendell LE, Gordon JCD (1999) Vocal response of long-finned pilot whales (Globicephala melas) to military sonar in the Ligurian Sea. Mar Mammal Sci 15:198–204

    CrossRef  Google Scholar 

  • Richardson WJ, Würsig B, Greene CR (1986) Reactions of bowhead whales, Balaena mysticetus, to seismic exploration in the Canadian Beaufort Sea. J Acoust Soc Am 79:1117–1126

    CAS  PubMed  CrossRef  Google Scholar 

  • Ross D (2005) Ship sources of ambient noise. IEEE J Ocean Eng 30:257–261

    CrossRef  Google Scholar 

  • Scheifele PM, Andrew S, Cooper RA, Darre M, Musiek FE, Max L (2005) Indication of a Lombard vocal response in the St. Lawrence River beluga. J Acoust Soc Am 117:1486–1492

    CAS  PubMed  CrossRef  Google Scholar 

  • Schnitzler HU, Kalko EKV (2001) Echolocation behavior of insect-eating bats. Bioscience 51:557–569

    CrossRef  Google Scholar 

  • Serrano A, Terhune JM (2002) Antimasking aspects of harp seal (Pagophilus groenlandicus) underwater vocalizations. J Acoust Soc Am 112:3083–3090

    PubMed  CrossRef  Google Scholar 

  • Shaffer JW, Moretti D, Jarvis S, Tyack P, Johnson M (2013) Effective beam pattern of the Blainville’s beaked whale (Mesoplodon densirostris) and implications for passive acoustic monitoring. J Acoust Soc Am 133:1770–1784. doi: 10.1121/1.4776177

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Spiesberger JL, Fristrup KM (1990) Passive localization of calling animals and sensing of their acoustic environment using acoustic tomography. Am Nat 135:107–153

    CrossRef  Google Scholar 

  • Stafford KM, Fox CG, Clark DS (1998) Long-range acoustic detection and localization of blue whale calls in the northeast Pacific. J Acoust Soc Am 104:3616–3625

    CAS  PubMed  CrossRef  Google Scholar 

  • Terhune JM (1999) Pitch separation as a possible jamming-avoidance mechanism in underwater calls of bearded seals (Erignathus barbatus). Can J Zool 77:1025–1034

    Google Scholar 

  • Terhune JM, Stewart REA, Ronald K (1979) Influence of vessel noises on underwater vocal activity of harp seals. Can J Zool 57:1337–1338

    CrossRef  Google Scholar 

  • Turnbull SD, Terhune JM (1993) Repetition enhances hearing detection thresholds in a harbor seal (Phoca vitulina). Can J Zool 71:926–932

    CrossRef  Google Scholar 

  • Tyack PL (1986) Population biology, social behavior and communication in whales and dolphins. Trends Ecol Evol 1:144–150

    CAS  PubMed  CrossRef  Google Scholar 

  • Tyack PL (1997a) Studying how cetaceans use sound to explore their environment. Persp Ethol 12:251–297

    CrossRef  Google Scholar 

  • Tyack PL, Sayigh LS (1997b) Vocal learning in cetaceans. In: Snowdon C, Hausberger M (eds) Social influences on vocal development. Cambridge University Press, Cambridge, pp. 208–233

    Google Scholar 

  • Tyack PL (1998) Acoustic communication under the sea. In: Hopp SL, Owren MJ, Evans CS (eds) Animal acoustic communication. Springer, Berlin Heidelberg New York, pp 163–220

    CrossRef  Google Scholar 

  • Tyack PL (2000) Dolphins whistle a signature tune. Science 289:1310–1311

    CAS  PubMed  CrossRef  Google Scholar 

  • Tyack P (2008) Implications for marine mammals of large-scale changes in the marine acoustic environment. J Mammal 89:549–558

    CrossRef  Google Scholar 

  • Tyack PL, Miller EH (2002) Vocal anatomy, acoustic communication and echolocation. In: Hoelzel AR (ed) Marine mammal biology: a evolutionary approach. Blackwell, Oxford, pp 142–184

    Google Scholar 

  • Tyack PL, Whitehead H (1983) Male competition in large groups of male humpback whales. Behaviour 82:132–154

    CrossRef  Google Scholar 

  • Tyack PL, Zimmer WMX, Moretti D, Southall BL, Claridge DE, Durban JW, Clark CW, D’Amico A, DiMarzio N, Jarvis S, McCarthy E, Morrissey R, Ward J, Boyd I (2011) Beaked whales respond to simulated and actual navy sonar. PLoS ONE 6:e17009

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Ulanovsky N, Fenton MB, Tsoar A, Korine C (2004) Dynamics of jamming avoidance in echolocating bats. Proc Roy Soc Lond B 271:1467–1475

    CrossRef  Google Scholar 

  • Urick RJ (1983) Principles of underwater sound. Peninsula Publishing, Los Altos

    Google Scholar 

  • van Parijs SM, Corkeron PJ (2001) Boat traffic affects the acoustic behaviour of Pacific humpback dolphins, Sousa chinensis. J Mar Biol Assoc UK 81:533–538

    CrossRef  Google Scholar 

  • Verboom WC, Kastelein RA (1997) Structure of harbour porpoise (Phocoena phocoena) click train signals. In: Read AJ, Wiepkema PR, Nachtigall PE (eds) The biology of the harbour porpoise. De Spil, Woerden, pp. 343–363

    Google Scholar 

  • Wahlberg M, Frantzis A, Alexiadou P, Madsen PT, Møhl B (2005) Click production during breathing in a sperm whale (Physeter macrocephalus). J Acoust Soc Am 118:3404–3407

    PubMed  CrossRef  Google Scholar 

  • Watkins WA, Schevill WE (1977) Sperm whale codas. J Acoust Soc Am 62:1485–1490

    CrossRef  Google Scholar 

  • Watkins WA, Schevill WE (1979) Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus. J Mammal 60:155–163

    CrossRef  Google Scholar 

  • Watkins WA, Tyack P, Moore K, Bird J (1987) The 20-Hz signals of finback whales (Balaenoptera physalus). J Acoust Soc Am 82:1901–1912

    CAS  PubMed  CrossRef  Google Scholar 

  • Watkins WA, George JE, Daher MA, Mullin K, Martin DL, Haga SH, DiMarzio NA (2000) Whale call data for the North Pacific: November 1995 through July 1999 occurrence of calling whales and source locations from SOSUS and other acoustic systems. Woods Hole Oceanographic Institution Technical Report 2000−2002

    Google Scholar 

  • Weilgart L, Whitehead H (1993) Coda vocalizations in sperm whales off the Galapàgos Islands. Can J Zool 71:744–752

    CrossRef  Google Scholar 

  • Widener MW (1967) Ambient-noise levels in selected shallow water off Miami, Florida. J Acoust Soc Am 42:904–905

    CrossRef  Google Scholar 

  • Wieland M, Jones A, Renn SCP (2010) Changing durations of southern resident killer whale (Orcinus orca) discrete calls between two periods spanning 28 years. Mar Mammal Sci 26:195–201

    CrossRef  Google Scholar 

  • Zelick RD, Narins PM (1983) Intensity discrimination and the precision of call timing in two species of neotropical treefrogs. J Comp Physiol A 153:403–412

    CrossRef  Google Scholar 

  • Zimmer WMX, Johnson M, Madsen PT, Tyack PL (2005a) Echolocation clicks of Cuvier’s beaked whales (Ziphius cavirostris). J Acoust Soc Am 117:3919–3927

    PubMed  CrossRef  Google Scholar 

  • Zimmer WMX, Tyack PL, Johnson MP, Madsen PT (2005b) Three-dimensional beam pattern of regular sperm whale clicks confirms bent-horn hypothesis. J Acoust Soc Am 117:1473–1485

    PubMed  CrossRef  Google Scholar 

Download references

Acknowledgments

Funding for the preparation of this review was provided by grants to PLT from the United States Office of Naval Research and support from the WHOI Marine Mammal Center. This work received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Tyack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tyack, P.L., Janik, V.M. (2013). Effects of Noise on Acoustic Signal Production in Marine Mammals. In: Brumm, H. (eds) Animal Communication and Noise. Animal Signals and Communication, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41494-7_9

Download citation