Skip to main content

Avian Sound Perception in Noise

  • Chapter
  • First Online:
Book cover Animal Communication and Noise

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 2))

Abstract

All environments are noisy, and auditory systems have evolved to cope with this noise. Indeed all sensory systems employ mechanisms that facilitate the separation of relevant signals from irrelevant noise. Interestingly, most of what we know about hearing comes from tests conducted in the near absolute quiet of an acoustic test booth. Because of their tractability in the laboratory, their complex vocal repertoires, and their elaborate acoustic communication systems, birds have proven valuable models for understanding the effects of noise on hearing and acoustic communication in part by bringing laboratory and field studies together. Noise can have at least four different kinds of effects occurring either alone or together. These four categories of effects are hearing damage and permanent threshold shift (PTS) from acoustic overexposure, temporary threshold shift (TTS) from acoustic overexposure, masking of acoustic communication signals (or other biologically relevant sounds), and a host of other physiological and behavioral responses including effects on attention. Here we consider masking as separate from these other effects of noise on hearing and acoustic communication. Furthermore, we take an ‘auditory-centric’ point of view and consider masking exclusively from the point of view of the listening bird. We review the behavioral and auditory strategies that birds use to maximize communication in a noisy environment and suggest an approach to assessing the risk posed by noise, whether natural or anthropogenic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler HJ, Poje CP, Saunders JC (1993) Recovery of auditory function and structure in the chick after two intense pure tone exposures. Hearg Res 71:214–224

    Article  CAS  Google Scholar 

  • Au WW, Moore PW (1990) Critical ratio and critical bandwidth for the Atlantic bottlenose dolphin. J Acoust Soc Am 88:1635

    Article  CAS  PubMed  Google Scholar 

  • Babisch W, Ising H, Gallacher JEJ (2003) Health status as a potential effect modifier of the relation between noise annoyance and incidence of ischaemic heart disease. Occup Environ Med 60:739–745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barber J, Razak K, Fuzessery Z (2003) Can two streams of auditory information be processed simultaneously? Evidence from the gleaning bat Antrozous pallidus. J Comp Physiol A 189:843–855

    Article  CAS  Google Scholar 

  • Bee MA, Klump GM (2004) Primitive auditory stream segregation: a neurophysiological study in the songbird forebrain. J Neurophys 92:1088–1104

    Google Scholar 

  • Bee MA, Klump GM (2005) Auditory stream segregation in the songbird forebrain: effects of time intervals on responses to interleaved tone sequences. Brain Behav Evolut 66:197–214

    Article  Google Scholar 

  • Bee MA, Micheyl C (2008) The cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it? J Comp Psychol 122:235–251

    Article  PubMed Central  PubMed  Google Scholar 

  • Bedanova I, Chloupek J, Chloupek P, Knotkova Z, Voslarova E, Pistekova V, Vecerek V (2010) Responses of peripheral blood leukocytes to chronic intermittent noise exposure in broilers. Reaktionen der peripheren Leukozyten auf die chronische Einwirkung von intermittierendem Lärm bei Broilern. Berl Münch Tierärztl 6:186–191

    Google Scholar 

  • Békésy G (1960) Experiments in hearing. McGraw-Hill, New York

    Google Scholar 

  • Blumenrath SH, Dabelsteen T (2004) Sound degradation before and after foliation: implications for acoustic communication in a deciduous forest. Behaviour 141:935–958

    Article  Google Scholar 

  • Blumenrath SH, Dooling RJ (2011) Communicating in Social Networks and Natural Environments: Effects of Reverberation and Noise. Abstract, 3rd symposium on acoustic communication by animals, Cornell University, Ithaca

    Google Scholar 

  • Blumenrath SH, Dooling RJ (2012) Forming auditory objects in a reverberant cocktail party setting. Abstract, 10th International Congress of Neuroethology (ICN), International Society of Neuroethology, University of Maryland, College Park

    Google Scholar 

  • Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. MIT Press, Cambridge

    Google Scholar 

  • Bregman AS, Campbell JD (1971) Primary auditory stream segregation and perception of order in rapid sequences of tones. J Exp Psychol 89:244–249

    Article  CAS  PubMed  Google Scholar 

  • Brenowitz EA (1982) The active space of red-winged blackbird song. J Comp Physiol A 147:511–522

    Article  Google Scholar 

  • Bronkhorst AW (2000) The cocktail party phenomenon: a review of research on speech intelligibility in multiple-talker conditions. Acustica 86:117–128

    Google Scholar 

  • Brumm H (2004) The impact of environmental noise on song amplitude in a territorial bird. J Anim Ecol 73:434–440

    Article  Google Scholar 

  • Brumm H (2009) Song amplitude and body size in birds. Behav Ecol Sociobiol 63:1157–1165

    Google Scholar 

  • Brumm H, Naguib M (2009) Environmental acoustics and the evolution of bird song. Adv Stud Behav 40:1–33

    Article  Google Scholar 

  • Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. Adv Stud Behav 35:151–209

    Article  Google Scholar 

  • Brumm H, Slater PJ (2006) Animals can vary signal amplitude with receiver distance: evidence from zebra finch song. Anim Behav 72:699–705

    Google Scholar 

  • Brumm H, Todt D (2002) Noise-dependent song amplitude regulation in a territorial songbird. Anim Behav 63:891–897

    Article  Google Scholar 

  • Brumm H, Zollinger A (2011) The evolution of the Lombard effect: 100 years of psychoacoustic research. Behaviour 148:1173

    Google Scholar 

  • Buus S, Klump GM, Gleich O, Langemann U (1995) An excitation-pattern model for the starling (Sturnus vulgaris). J Acoust Soc Am 98:112–124

    Google Scholar 

  • Carlyon RP (2004) How the brain separates sounds. Trends Cogn Sci 8:465–471

    Article  PubMed  Google Scholar 

  • Carr CE, Code RA (2000) The central auditory system of reptiles and birds. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative hearing: birds and reptiles. Springer, New York, pp 197–248

    Google Scholar 

  • Cohen S, Glass DC, Phillips S (1979) Environment and health. In: Freeman H, Levine S, Reeder LG (eds) Handbook of medical sociology. Prentice-Hall, Englewood Cliffs, pp 134–149

    Google Scholar 

  • Cynx J, Lewis R, Tavel B, Tse H (1998) Amplitude regulation of vocalizations in noise by a songbird, Taeniopygia guttata. Anim Behav 56:107–113

    Article  PubMed  Google Scholar 

  • Dabelsteen T (2005) Public, private or anonymous? Facilitating and countering eavesdropping In: McGregor PK (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 38–61

    Google Scholar 

  • Dabelsteen T, Larsen ON, Pedersen SB (1993) Habitat-induced degradation of sound signals: quantifying the effects of communication sounds and bird location on blur ratio, excess attenuation and signal-to-noise ratio in blackbird song. J Acoust Soc Am 93:2206–2220

    Article  Google Scholar 

  • Dent ML, Larsen ON, Dooling RJ (1997) Free-field binaural unmasking in budgerigars (Melopsittacus undulatus). Behav Neurosci 111:590–598

    Article  CAS  PubMed  Google Scholar 

  • Dooling RJ (1982) Auditory perception in birds. In: Kroodsma D, Miller E (eds) Acoustic Communication in Birds, vol 1. Academic Press, New York, pp 95–130

    Chapter  Google Scholar 

  • Dooling RJ, Dent ML, Lauer AM, Ryals BM (2005) Functional recovery after hair cell regeneration in birds. In: Salv RJ, Popper AN, Fay RR (eds) Hair cell regeneration, repair, and protection. Springer, New York, pp 117–140

    Google Scholar 

  • Dooling RJ, Saunders JC (1975) Hearing in the parakeet (Melopsittacus undulatus): absolute thresholds, critical ratios, frequency difference limens, and vocalizations. J Comp Physiol Psych 88:1–20

    Article  CAS  Google Scholar 

  • Dooling RJ, Lohr B, Dent ML (2000) Hearing in birds and reptiles. In: Dooling RJ, Popper AN, Fay RR (eds) Comparative hearing: birds and reptiles. Springer, New York, pp 308–359

    Chapter  Google Scholar 

  • Dooling RJ, Dent ML, Lauer AM, Ryals BM (2008) Functional recovery following hair cell regeneration in birds. In: Salvi RJ, Popper AN, Fay RR (eds) Hair cell regeneration, repair and protection, vol 33. Springer Handbook of Auditory Research

    Google Scholar 

  • Douglas Iii HD, Conner WE (1999) Is there a sound reception window in coastal environments? Evidence from shorebird communication systems. Naturwissenschaften 86:228–230

    Google Scholar 

  • Dubois A, Martens J (1984) A case of possible vocal convergence between frogs and a bird in Himalayan torrents. J Ornithol 125:455–463

    Google Scholar 

  • Ehret G (1975) Masked auditory thresholds, critical ratios, and scales of the basilar membrane of the housemouse (Mus musculus). J Comp Physiol A 103:329–341

    Article  Google Scholar 

  • Fay RR (1998) Auditory stream segregation in goldfish (Carassius auratus). Hearing Res 120:69–76

    Article  CAS  Google Scholar 

  • Fishman YI, Arezzo JC, Steinschneider M (2004) Auditory stream segregation in monkey auditory cortex: effects of frequency separation, presentation rate, and tone duration. J Acoust Soc Am 116:1656–1670

    Article  PubMed  Google Scholar 

  • Foppen R, Reijnen R (2004) The effects of car traffic on breeding bird populations in woodland. II. Breeding dispersal of male willow warblers (Phylloscopus trochilus) in relation to the proximity of a highway. J Appl Ecol 31:95–101

    Article  Google Scholar 

  • Forman RTT, Reineking B, Hersperger AM (2002) Road traffic and nearby grassland bird patterns in a suburbanizing landscape. Environ Manage 29:782–800

    Article  PubMed  Google Scholar 

  • Francis CD, Ortega CP, Cruz A (2009) Noise pollution changes avian communities and species interactions. Curr Biol 19:1415–1419

    Article  CAS  PubMed  Google Scholar 

  • Francis CD, Ortega CP, Cruz A (2011a) Different behavioural responses to anthropogenic noise by two closely related passerine birds. Biol Lett 7:850–852

    Article  PubMed Central  PubMed  Google Scholar 

  • Francis CD, Ortega CP, Cruz A (2011b) Noise pollution filters bird communities based on vocal frequency. PLoS ONE 6:e27052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freyaldenhoven MC, Smiley DF, Muenchen RA, Konrad TN (2006) Acceptable Noise Level: Reliability measures and comparison to preference for background sounds. J Am Acad Audiol 17:640–648

    Article  PubMed  Google Scholar 

  • Gleich O, Dooling RJ, Manley GA (2005) Audiogram, body mass and basilar papilla length: correlations in birds and predictions for extinct archosaurs. Naturwissenshaften 92:595–598

    Article  CAS  Google Scholar 

  • Gleich O, Manley GA (2000) The hearing organ of birds and cocodilia. In: Dooling RJ, Popper AN, Fay RR (eds) Comparative hearing: birds and reptiles. Springer, New York, pp 70–138

    Chapter  Google Scholar 

  • Greenwood DD (1961a) Auditory masking and the critical band. J Acoust Soc Am 33:484–502

    Google Scholar 

  • Greenwood DD (1961b) Critical bandwidth and the frequency coordinates of the basilar membrane. J Acoust Soc Am 33:1344–1356

    Google Scholar 

  • Halfwerk W, Holleman LJ, Lessells CKM, Slabbekoorn H (2011) Negative impact of traffic noise on avian reproductive success. J Appl Ecol 48:210–219

    Article  Google Scholar 

  • Hartmann WM (1988) Pitch perception and the segregation and integration of auditory entities. In: Edelman GW, Gall E, Cowan WM (eds) Auditory function—neurobiological bases of hearing. Wiley, New York, pp 623–645

    Google Scholar 

  • Hashino E, Sokabe M (1989) Kanamycin induced low‐frequency hearing loss in the budgerigar (Melopsittacus undulatus). J Acoust Soc Am 85:289

    Google Scholar 

  • Hashino E, Sokabe M, Miyamoto K (1988) Frequency-specific susceptivility to acoustic trauma in the budgerigar (Melopsittacus undulatus). J Acoust Soc Am 83:2450–2453

    Google Scholar 

  • Holland J, Dabelsteen T, Pedersen SB, Larsen ON (1998) Degradation of wren Troglodytes troglodytes song: implications for information transfer and ranging. J Acoust Soc Am 103:2154–2166

    Article  Google Scholar 

  • Hulse SH (2002) Auditory scene analysis in animal communication. Adv Stud Behav 31:163–200

    Article  Google Scholar 

  • Hulse SH, MacDougall-Shackleton SA, Wisniewski AB (1997) Auditory scene analysis by songbirds: stream segregation of birdsong by European starlings (Sturnus vulgaris). J Comp Psychol 111:3–13

    Article  CAS  PubMed  Google Scholar 

  • Hine JE, Martin RL, Moore DR (1994) Free-field binaural unmasking in ferrets. Behav Neurosci 108:196–205

    Article  CAS  PubMed  Google Scholar 

  • Izumi A (2002) Auditory stream segregation in Japanese monkeys. Cognition 82:B113–B122

    Article  PubMed  Google Scholar 

  • Klump GM (1996) Bird communication in the noisy world. In: Kroodsma DE, Miller EH (eds) Ecology and evolution of acoustic communication in birds. Cornell University Press, Ithaca, pp 321–338

    Google Scholar 

  • Klump GM, Langemann U (1995) Comodulation masking release in a songbird. Hear Res 87:157–164

    Article  CAS  PubMed  Google Scholar 

  • Klump GM, Windt W, Curio E (1986) The great tit’s (Parus major) auditory resolution in azimuth. J Comp Physiol A 158:383–390

    Article  Google Scholar 

  • Konishi M (1973) How the owl tracks its prey. Am Sci 61:414–424

    Google Scholar 

  • Langemann U, Klump GM, Dooling RJ (1995) Critical bands and critical-ratio bandwidth in the European starling. Hear Res 84:167–176

    Article  CAS  PubMed  Google Scholar 

  • Langemann U, Gauger B, Klump GM (1998) Auditory sensitivity in the great tit: perception of signals in the presence and absence of noise. Anim Behav 56:763–769

    Article  PubMed  Google Scholar 

  • Lohr B, Wright TF, Dooling RJ (2003) Detection and discrimination of natural calls in masking noise by birds: estimating the active space signal. Anim Behav 65:763–777

    Article  Google Scholar 

  • MacDougall-Shackleton SA, Hulse SH, Gentner TQ, White W (1998) Auditory scene analysis by European starlings (Sturnus vulgaris): Perceptual segregation of tone sequences. J Acoust Soc Am 103:3581

    Article  CAS  PubMed  Google Scholar 

  • Manabe K, Sadr EI, Dooling RJ (1998) Control of vocal intensity in budgerigars (Melopsittacus undulatus): differential reinforcement of vocal intensity and the Lombard effect. J Acoust Soc Am 103:1190–1198

    Article  CAS  PubMed  Google Scholar 

  • Marten K, Marler P (1977) Sound transmission and its significance for animal vocalization. I. Temperate habitats. Behav Ecol Sociobiol 2:271–290

    Article  Google Scholar 

  • Marten K, Quine D, Marler P (1977) Sound transmission and its significance for animal vocalization: II. Tropical forest habitats. Behav Ecol Sociobiol 2:291–302

    Article  Google Scholar 

  • Mathevon N, Aubin T, Dabelsteen T (1996) Song degradation during propagation: Importance of song post for the wren Troglodytes troglodytes. Ethology 102:397–412

    Article  Google Scholar 

  • Mathevon N, Dabelsteen T, Blumenrath SH (2005) Are high perches in the blackcap Silvia atricapilla song or listening posts? A transmission study. J Acoust Soc Am 117:442–449

    Article  PubMed  Google Scholar 

  • Micheyl C, Tian B, Carlyon RP, Rauschecker JP (2005) Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron 48:139–148

    Article  CAS  PubMed  Google Scholar 

  • Miller JD (1974) Effects of noise on people. J Acoust Soc Am 56:729–763

    Article  CAS  PubMed  Google Scholar 

  • Mockford EJ, Marshall RC, Dabelsteen T (2011) Degradation of rural and urban great tit song: testing transmission efficiency. PLoS ONE 6:e28242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morton ES (1975) Ecological sources of selection on avian sounds. Am Nat 109:17–34

    Article  Google Scholar 

  • Moore BC (2003) An introduction to the psychology of hearing. Vol 4. San Diego: Academic press

    Google Scholar 

  • Moss CF, Surlykke A (2001) Auditory scene analysis by echolocation in bats. J Acoust Soc Am 110:2207

    Article  CAS  PubMed  Google Scholar 

  • Naguib M, Klump GM, Hillma E, Griessmann B, Teige T (2000) Assessment of auditory distance in a territorial songbird: accurate feat or rule of thumb? Anim Behav 59:715–721

    Article  PubMed  Google Scholar 

  • Nelson DA, Marler P (1990) The perception of birdsong and an ecological concept of signal space. In: Stebbins WC, Berkley MA (eds) Comparative Perception, Vol 2: Complex Signals. Wiley, New York, pp 443–478

    Google Scholar 

  • Nemeth E, Brumm H (2010) Birds and anthropogenic noise: are urban songs adaptive? Am Nat 176:465–475

    Article  PubMed  Google Scholar 

  • Potash LM (1972) Noise induced changes in calls of the Japanese quail. Psychon Sci 26:252–254

    Article  Google Scholar 

  • Osmanski M, Dooling RJ (2006) Auditory feedback of vocal production in budgerigars using earphones. J Acoust Soc Am 119:3350

    Google Scholar 

  • Ryals BM, Dooling RJ, Westbrook E, Dent ML, MacKenzie A, Larsen ON (1999) Avian species differences in susceptibility to noise exposure. Hear Res 131:71–88

    Article  CAS  PubMed  Google Scholar 

  • Ryan MJ, Brenowitz EA (1985) The role of body size, phylogeny, and ambient noise in the evolution of bird song. Am Nat 126:87–100

    Article  Google Scholar 

  • Saberi K, Dostal L, Sadralodabai T, Bull V, Perrott DR (1991) Free-field release from masking. J Acoust Soc Am 90:1355–1370

    Article  CAS  PubMed  Google Scholar 

  • Saunders JC, Duncan RK, Doan DE, Werner YL (2000) The middle ear of reptiles and birds. In: Dooling RJ, Popper AN, Fay RR (eds) Comparative hearing: birds and reptiles. Springer, New York, pp 13–69

    Chapter  Google Scholar 

  • Saunders JC, Dooling RJ (1974) Noise-induced threshold shift in the parakeet (Melopsittacus undulatus). Proc Natl Acad Sci USA 71:1962–1965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schroeder J, Nakagawa S, Cleasby IR, Burke T (2012) Passerine birds breeding under chronic noise experience reduced fitness. PLOS ONE 7:e39200

    Google Scholar 

  • Schuster S, Zollinger SA, Lesku JA, Brumm H (2012) On the evolution of noise-dependent vocal plasticity in birds. Biol Lett 8:913–916. doi:10.1098/rsbl.2012.0676

    Article  PubMed  Google Scholar 

  • Schwartz JJ, Gerhardt HC (1989) Spatially mediated release from auditory masking in an anuran amphibian. J Comp Physiol A 166:37–41

    Google Scholar 

  • Slabbekoorn H, Peet M (2003) Birds sing at a higher pitch in urban noise. Nature 424:267–269

    Article  CAS  PubMed  Google Scholar 

  • Slabbekoorn H, Halfwerk W (2009) Behavioural ecology: noise annoys at community level. Curr Biol 19:R693–R695

    Article  CAS  PubMed  Google Scholar 

  • Slabbekoorn H, Smith TB (2002) Habitat‐dependent song divergence in the little greenbul: An analysis of environmental selection pressures on acoustic signals. Evolution 56:1849–1858

    Google Scholar 

  • Smith A (1991) A review of the non-auditory effects of noise on health. Work Stress 5:49–62

    Article  Google Scholar 

  • Tanaka K, Smith CA (1978) Structure of the chicken's inner ear: SEM and TEM study. American Journal of Anatomy 153:251–271

    Google Scholar 

  • Voslarova E, Chloupek P, Chloupek J, Bedanova I, Pistekova V, Vecerek V (2011) The effects of chronic intermittent noise exposure on broiler chicken performance. Anim Sci J 82:601–606

    Article  PubMed  Google Scholar 

  • Vliegen J, Oxenham AJ (1999) Sequential stream segregation in the absence of spectral cues. J Acoust Soc Am 105:339

    Article  CAS  PubMed  Google Scholar 

  • WHO Report 2011 Burden of disease from environmental noise - Quantification of healthy life years lost in Europe. ISBN: 978 92 890 0229 5 http://www.euro.who.int/__data/assets/pdf_file/0008/136466/e94888.pdf

  • Wisniewski AB, Hulse SH (1997) Auditory scene analysis in European starlings (Sturnus vulgaris): discrimination of song segments, their segregation from multiple and reversed conspecific songs, and evidence for conspecific song categorization. J Comp Psychol 111:337

    Article  Google Scholar 

  • Wiley RH, Richards DG (1982) Adaptations for acoustic communication in birds: sound transmission and signal detection. In: Kroodsma DE, Miller EH (eds) Acoustic communication in birds, vol 1. Academic Press, New York, pp 131–181

    Chapter  Google Scholar 

  • Zwicker E, Flottorp G, Stevens SS (1957) Critical band width in loudness summation. J Acoust Soc Am 29:548–557

    Article  Google Scholar 

  • Zwislocki J (1963) Analysis of some auditory characteristics. New York Lab of Sensory Communication, Syracuse University, New York

    Google Scholar 

Download references

Acknowledgments

The work cited in this chapter was partially supported by NIH grants to RJD. We thank Marjorie Leek and Sue Anne Zollinger for comments on earlier versions of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Dooling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dooling, R.J., Blumenrath, S.H. (2013). Avian Sound Perception in Noise. In: Brumm, H. (eds) Animal Communication and Noise. Animal Signals and Communication, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41494-7_8

Download citation

Publish with us

Policies and ethics