Effects of Noise on Sound Perception in Marine Mammals

Part of the Animal Signals and Communication book series (ANISIGCOM, volume 2)


For marine mammals, auditory perception plays a critical role in a variety of acoustically mediated behaviors, such as communication, foraging, social interactions, and avoidance of predators. Although auditory perception involves many other factors beyond merely hearing or detecting sounds, sound detection is a required element for perception. As with many other processes, sound detection may be adversely affected by the presence of noise. This chapter focuses on two of the most common manifestations of the effects of noise on sound detection: auditory masking and noise-induced threshold shifts. The current state of knowledge regarding auditory masking and noise-induced threshold shifts in marine mammals is reviewed, and perceptual consequences of masking and threshold shifts are discussed.


Noise-induced Threshold Shift (NITS) Auditory Steady-state Response (ASSR) ASSR Thresholds Auditory Filter Kastak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The preparation of this paper was supported by the International Association of Oil and Gas Producers Joint Industry Programme (JIP) on Exploration & Production Sound and Marine Life, the US Navy Chief of Naval Operations (N45) Living Marine Resources Program, and the US Office of Naval Research Marine Mammal S&T Program.


  1. 29CFR1910.95 (2009) Occupational noise exposure. Occup Safety Health Stand 1910Google Scholar
  2. American National Standards Institute (2011) ANSI S1.8-1989 (R2011) American national standard reference quantities for acoustical levels, vol ANSI S1.8-1989 (R2011). Acoustical Society of America, New YorkGoogle Scholar
  3. Anderson DJ, Rose JE, Hind JE, Brugge JF (1971) Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. J Acoust Soc Am 49(4):1131–1139PubMedCrossRefGoogle Scholar
  4. ANSI S1.1-1994 (R 2004) (1994) American national standard acoustical terminology. Acoustical Society of America, New YorkGoogle Scholar
  5. Au WWL (1980) Echolocation signals of the Atlantic bottlenose dolphin (Tursiops truncatus) in open waters. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum, New York, pp 251–282Google Scholar
  6. Au WWL, Moore PWB (1984) Receiving beam patterns and directivity indices of the Atlantic bottlenosed dolphin (Tursiops truncatus). J Acoust Soc Am 75(1):255–262PubMedCrossRefGoogle Scholar
  7. Au WWL, Moore PWB (1990) Critical ratio and critical bandwidth for the Atlantic bottlenose dolphin. J Acoust Soc Am 88(3):1635–1638PubMedCrossRefGoogle Scholar
  8. Au WWL, Carder DA, Penner R, Scronce BL (1988) Demonstration of adaptation in beluga whale echolocation. J Acoust Soc Am 93:1–14Google Scholar
  9. Au WWL, Branstetter BK, Benoit-Bird KJ, Kastelein RA (2009) Acoustic basis for fish prey discrimination by echolocating dolphins and porpoises. J Acoust Soc Am 126(1):460–467PubMedCrossRefGoogle Scholar
  10. Bee MA, Buschermohle M, Klump GM (2007) Detecting modulated signals in modulated noise: (II) neural thresholds in the songbird forebrain. Eur J Neurosci 26(7):1979–1994PubMedCrossRefGoogle Scholar
  11. Branstetter BK, Finneran JJ (2008) Comodulation masking release in bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am 124(1):625–633PubMedCrossRefGoogle Scholar
  12. Branstetter BK, Mercado III E, Au WWL (2007) Representing multiple discrimination cues in a computational model of the bottlenose dolphin auditory system. J Acoust Soc Am 122 (4):2459–2468Google Scholar
  13. Branstetter BK, Moore PW, Finneran JJ, Tormey MN, Aihara H (2012) Directional properties of bottlenose dolphin (Tursiops truncatus) clicks, burst-pulse, and whistle sounds. J Acoust Soc Am 131(2):1613–1621PubMedCrossRefGoogle Scholar
  14. Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. The MIT Press, MassachusettsGoogle Scholar
  15. Clark JG (1981) Uses and abuses of hearing loss classification. ASHA 23(7):493–500PubMedGoogle Scholar
  16. Clark WW (1991) Recent studies of temporary threshold shifts (TTS) and permanent threshold shift (PTS) in animals. J Acoust Soc Am 90(1):155–163PubMedCrossRefGoogle Scholar
  17. Clark CW, Ellison WT, Southall BL, Hatch L, Van Parijs SM, Frankel A, Ponirakis D (2009) Acoustic masking in marine ecosystems: intuitions, analysis, and implication. Mar Ecol Prog Ser 395:201–222CrossRefGoogle Scholar
  18. Cornsweet TN (1962) The staircase method in psychophysics. Am J Psych 75:485–491CrossRefGoogle Scholar
  19. de Boer E, Nuttall AL (2010) Cochlear mechanics, tuning, non-linearities. In: Fuchs PA (ed) The ear, vol 1., The Oxford handbook of auditory scienceOxford University Press, New YorkGoogle Scholar
  20. Dolphin WF, Au WW, Nachtigall PE, Pawloski J (1995) Modulation rate transfer functions to low-frequency carriers in three species of cetaceans. J Comp Physiol A 177(2):235–245Google Scholar
  21. Elliott DN, Fraser WR (1970) Fatigue and adaptation. In: Tobias JV (ed) Foundations of modern auditory theory, vol I. Academic Press, New York, pp 117–155Google Scholar
  22. Erbe C (2008) Critical ratios of beluga whales (Delphinapterus leucas) and masked signal duration. J Acoust Soc Am 124(4):2216–2223PubMedCrossRefGoogle Scholar
  23. Finneran JJ (2010) Auditory weighting functions and frequency-dependent effects of sound in bottlenose dolphins (Tursiops truncatus) (trans: 322 C). Marine Mammals and biological oceanography annual reports: FY10. Office of Naval Research (ONR), Washington, DCGoogle Scholar
  24. Finneran JJ, Schlundt CE (2010) Frequency-dependent and longitudinal changes in noise-induced hearing loss in a bottlenose dolphin (Tursiops truncatus). J Acoust Soc Am 128(2):567–570PubMedCrossRefGoogle Scholar
  25. Finneran JJ, Schlundt CE (2011) Subjective loudness level measurements and equal loudness contours in a bottlenose dolphin (Tursiops truncatus). J Acoust Soc Am 130(5):3124–3136PubMedCrossRefGoogle Scholar
  26. Finneran JJ, Schlundt CE, Carder DA, Clark JA, Young JA, Gaspin JB, Ridgway SH (2000) Auditory and behavioral responses of bottlenose dolphins (Tursiops truncatus) and a beluga whale (Delphinapterus leucas) to impulsive sounds resembling distant signatures of underwater explosions. J Acoust Soc Am 108(1):417–431PubMedCrossRefGoogle Scholar
  27. Finneran JJ, Schlundt CE, Carder DA, Ridgway SH (2002a) Auditory filter shapes for the bottlenose dolphin (Tursiops truncatus) and the white whale (Delphinapterus leucas) derived with notched noise. J Acoust Soc Am 112(1):322–328PubMedCrossRefGoogle Scholar
  28. Finneran JJ, Schlundt CE, Dear R, Carder DA, Ridgway SH (2002b) Temporary shift in masked hearing thresholds (MTTS) in odontocetes after exposure to single underwater impulses from a seismic water gun. J Acoust Soc Am 111(6):2929–2940PubMedCrossRefGoogle Scholar
  29. Finneran JJ, Dear R, Carder DA, Ridgway SH (2003) Auditory and behavioral responses of California sea lions (Zalophus californianus) to single underwater impulses from an arc-gap transducer. J Acoust Soc Am 114(3):1667–1677PubMedCrossRefGoogle Scholar
  30. Finneran JJ, Carder DA, Schlundt CE, Ridgway SH (2005) Temporary threshold shift (TTS) in bottlenose dolphins (Tursiops truncatus) exposed to mid-frequency tones. J Acoust Soc Am 118(4):2696–2705PubMedCrossRefGoogle Scholar
  31. Finneran JJ, Houser DS, Schlundt CE (2007a) Objective detection of bottlenose dolphin (Tursiops truncatus) steady-state auditory evoked potentials in response to AM/FM tones. Aquat Mammals 33(1):43–54CrossRefGoogle Scholar
  32. Finneran JJ, London HR, Houser DS (2007b) Modulation rate transfer functions in bottlenose dolphins (Tursiops truncatus) with normal hearing and high-frequency hearing loss. J Comp Physiol A 193:835–843CrossRefGoogle Scholar
  33. Finneran JJ, Schlundt CE, Branstetter B, Dear RL (2007c) Assessing temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) using multiple simultaneous auditory evoked potentials. J Acoust Soc Am 122(2):1249–1264PubMedCrossRefGoogle Scholar
  34. Finneran JJ, Houser DS, Mase-Guthrie B, Ewing RY, Lingenfelser RG (2009) Auditory evoked potentials in a stranded Gervais’ beaked whale (Mesoplodon europaeus). J Acoust Soc Am 126(1):484–490PubMedCrossRefGoogle Scholar
  35. Finneran JJ, Carder DA, Schlundt CE, Dear RL (2010a) Growth and recovery of temporary threshold shift (TTS) at 3 kHz in bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am 127(5):3256–3266PubMedCrossRefGoogle Scholar
  36. Finneran JJ, Carder DA, Schlundt CE, Dear RL (2010b) Temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) exposed to intermittent tones. J Acoust Soc Am 127(5):3267–3272PubMedCrossRefGoogle Scholar
  37. Finneran JJ, Trickey JS, Branstetter BK, Schlundt CE, Jenkins K (2011) Auditory effects of multiple underwater impulses on bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am 130:2561(A)Google Scholar
  38. Finneran JJ, Branstetter BK, Trickey JS, Schlundt CE, Jenkins K (2012) Temporary threshold shift in bottlenose dolphins exposed to multiple air gun impulses. Paper presented at the joint industry programme on E&P sound and marine life programme review meeting II, Washington, DCGoogle Scholar
  39. Fletcher H (1940) Auditory patterns. Rev Mod Phys 12:47–65CrossRefGoogle Scholar
  40. Hall JW, Haggard MP, Fernandes MA (1984) Detection in noise by spectro-temporal pattern analysis. J Acoust Soc Am 76:50–56PubMedCrossRefGoogle Scholar
  41. Hall JW, Grose JH, Haggard MP (1990) Effects of flanking band proximity, number, and modulation pattern on comodulation masking release. J Acoust Soc Am 87(1):269–283PubMedCrossRefGoogle Scholar
  42. Henderson D, Hamernik RP (1986) Impulse noise: critical review. J Acoust Soc Am 80(2):569–584PubMedCrossRefGoogle Scholar
  43. Henderson D, Bielefeld EC, Harris KC, Hu BH (2006) The role of oxidative stress in noise-induced hearing loss. Ear Hear 27(1):1–19PubMedCrossRefGoogle Scholar
  44. Holt MM, Schusterman RJ (2007) Spatial release from masking of aerial tones in pinnipeds. J Acoust Soc Am 121(2):1219–1225PubMedCrossRefGoogle Scholar
  45. Holt MM, Noren DP, Veirs V, Emmons CK, Veirs S (2008) Speaking up: killer whales (Orcinus orca) increase their call amplitude in response to vessel noise. J Acoust Soc Am 125 (1):EL27–EL32Google Scholar
  46. Humes LE, Jesteadt W (1989) Models of the additivity of masking. J Acoust Soc Am 85(3):1285–1294PubMedCrossRefGoogle Scholar
  47. Janik VM (2000) Source levels and the estimated active space of bottlenose dolphin (Tursiops truncatus) whistles in the Moray Firth Scotland. J Comp Physiol A 186(7–8):673–680PubMedCrossRefGoogle Scholar
  48. Johnson CS (1971) Auditory masking of one pure tone by another in the bottlenosed porpoise. J Acoust Soc Am 49 (4 (part 2)):1317–1318Google Scholar
  49. Kastak D, Schusterman RJ (1996) Temporary threshold shift in a harbor seal (Phoca vitulina). J Acoust Soc Am 100(3):1905–1908PubMedCrossRefGoogle Scholar
  50. Kastak D, Schusterman RJ, Southall BL, Reichmuth CJ (1999) Underwater temporary threshold shift induced by octave-band noise in three species of pinniped. J Acoust Soc Am 106(2):1142–1148PubMedCrossRefGoogle Scholar
  51. Kastak D, Southall BL, Schusterman RJ, Kastak CR (2005) Underwater temporary threshold shift in pinnipeds: effects of noise level and duration. J Acoust Soc Am 118(5):3154–3163PubMedCrossRefGoogle Scholar
  52. Kastak D, Reichmuth C, Holt MM, Mulsow J, Southall BL, Schusterman RJ (2007) Onset, growth, and recovery of in-air temporary threshold shift in a California sea lion (Zalophus californianus). J Acoust Soc Am 122(5):2916–2924PubMedCrossRefGoogle Scholar
  53. Kastak D, Mulsow J, Ghoul A, Reichmuth C (2008) Noise-induced permanent threshold shift in a harbor seal. Acoustics 2008Google Scholar
  54. Kastelein R, Gransier R, van Mierlo R, Hoek L, de Jong C (2011) Temporary hearing threshold shifts and recovery in a harbor porpoise (Phocoena phocoena) and harbor seals (Phoca vitulina) exposed to white noise in a 1/1 octave band around 4 kHz. J Acoust Soc Am 129:2432 (A)Google Scholar
  55. Keeler JS (1968) Compatible exposure and recovery functions for temporary threshold shift-mechanical and electrical models. J Sound Vib 2:220–235CrossRefGoogle Scholar
  56. Ketten DR (2000) Cetacean ears. In: Au W, Popper AN, Fay RR (eds) Hearing by whales and dolphins. Springer handbook of auditory research, 1st edn. Springer, New York, pp 43–108Google Scholar
  57. Kryter KD (1973) Impairment to hearing from exposure to noise. J Acoust Soc Am 53(5):1211–1234PubMedCrossRefGoogle Scholar
  58. Kryter KD, Ward WD, Miller JD, Eldredge DH (1966) Hazardous exposure to intermittent and steady-state noise. J Acoust Soc Am 39(3):451–464PubMedCrossRefGoogle Scholar
  59. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29(45):14077–14085PubMedCentralPubMedCrossRefGoogle Scholar
  60. Lammers MO, Au WWL (2003) Directionality in the whistles of Hawaiian spinner dolphins (Stenella longirostris): a signal feature to cue direction of movement? Mar Mammal Sci 19(2):249–264CrossRefGoogle Scholar
  61. Lemonds DW (1999) Auditory filter shapes in an Atlantic bottlenose dolphin (Tursiops truncatus). University of HawaiiGoogle Scholar
  62. Lemonds DW, Kloepper LN, Nachtigall PE, Au WWL, Vlachos SA, Branstetter BK (2011) A re-evaluation of auditory filter shape in delphinid odontocetes: evidence of constant-bandwidth filters. J Acoust Soc Am 130(5):3107–3114PubMedCrossRefGoogle Scholar
  63. Levitt H (1971) Transformed up-down methods in psyhcoacoustics. J Acoust Soc Am 49:467–477PubMedCrossRefGoogle Scholar
  64. Lucke K, Siebert U, Lepper PA, Blanchet M-A (2009) Temporary shift in masked hearing thresholds in a harbor porpoise (Phocoena phocoena) after exposure to seismic airgun stimuli. J Acoust Soc Am 125(6):4060–4070PubMedCrossRefGoogle Scholar
  65. Maslen KR (1981) Towards a better understanding of temporary threshold shift of hearing. Appl Acoust 14:281–318CrossRefGoogle Scholar
  66. McCormick JG, Wever EG, Palin J, Ridgway SH (1970) Sound conduction in the dolphin ear. J Acoust Soc Am 48(6):1418–1428PubMedCrossRefGoogle Scholar
  67. McDonald MA, Hildebrand JA, Mesnick S (2009) Worldwide decline in tonal frequencies of blue whale songs. Endanger Species Res 9:13–21CrossRefGoogle Scholar
  68. McFadden D (1986) The curious half-octave shift: evidence for a basalward migration of the traveling-wave envelope with increasing intensity. In: Salvi RJ, Henderson D, Hamernik RP, Coletti V (eds) Basic and applied aspects of noise-induced hearing loss, vol 111. Proceedings of a NATO advanced studies institute on applied and basic aspects of noise-induced hearing loss, held September 23–29, 1985, in Lucca. NATO ASI Series A, Life Sciences edn. Plenum, New York, pp 295–312Google Scholar
  69. McFadden D (1988) Comodulation masking release: effects of varying the level, duration, and time delay of the cue band. J Acoust Soc Am 80:1658–1672CrossRefGoogle Scholar
  70. McFadden D, Plattsmier HS (1983) Frequency patterns of TTS for different exposure intensities. J Acoust Soc Am 74(4):1178–1184PubMedCrossRefGoogle Scholar
  71. Melnick W (1991) Human temporary threshold shift (TTS) and damage risk. J Acoust Soc Am 90(1):147–154PubMedCrossRefGoogle Scholar
  72. Miller JD (1974) Effects of noise on people. J Acoust Soc Am 56(3):729–764PubMedCrossRefGoogle Scholar
  73. Miller PJO (2002) Mixed-directionality of killer whale stereotyped calls: a direction of movement cue? Behav Ecol Sociobiol 52:262–270CrossRefGoogle Scholar
  74. Miller PJO, Biassoni N, Samuels A, Tyack PL (2000) Whale songs lengthen in response to sonar. Nature 405(6789):903PubMedCrossRefGoogle Scholar
  75. Mills JH (1976) Threshold shifts produced by a 90-day exposure to noise. In: Henderson D, Hamernik RP, Dosanjh DS, Mills JH (eds) Effects of noise on hearing. Raven Press, New York, pp 265–275Google Scholar
  76. Mills JH, Gilbert RM, Adkins WY (1979) Temporary threshold shifts in humans exposed to octave bands of noise for 16 to 24 hours. J Acoust Soc Am 65(5):1238–1248PubMedCrossRefGoogle Scholar
  77. Mooney TA, Nachtigall PE, Breese M, Vlachos S, Au WWL (2009a) Predicting temporary threshold shifts in a bottlenose dolphin (Tursiops truncatus): the effects of noise level and duration. J Acoust Soc Am 125(3):1816–1826PubMedCrossRefGoogle Scholar
  78. Mooney TA, Nachtigall PE, Vlachos S (2009b) Sonar-induced temporary hearing loss in dolphins. Biol Lett 5(4):565–567PubMedCentralPubMedCrossRefGoogle Scholar
  79. Moore BC (1996) Perceptual consequences of cochlear hearing loss and their implications for the design of hearing aids. Ear Hear 17(2):133–161PubMedCrossRefGoogle Scholar
  80. Moore BCJ (1998) Cochlear hearing loss. Whurr Publishers Ltd, LondonGoogle Scholar
  81. Moore BCJ, Glasberg BR (2003) Behavioural measurement of level-dependent shifts in the vibration pattern on the basilar membrane at 1 and 2 kHz. Hear Res 175:66–74PubMedCrossRefGoogle Scholar
  82. Moore BCJ, Wojtczak M, Vickers DA (1996) Effect of loudness recruitment on the perception of amplitude modulation. J Acoust Soc Am 100(1):481–489CrossRefGoogle Scholar
  83. Mulsow J, Reichmuth C (2007) Electrophysiological assessment of temporal resolution in pinnipeds. Aquat Mammals 33(1):122–131CrossRefGoogle Scholar
  84. Mulsow JL, Reichmuth C (2010) Psychophysical and electrophysiological aerial audiograms of a Steller sea lion (Eumetopias jubatus). J Acoust Soc Am 127(4):2692–2701PubMedCrossRefGoogle Scholar
  85. Mulsow J, Reichmuth C, Gulland FMD, Rosen DAS, Finneran JJ (2011a) Aerial audiograms of several California sea lions (Zalophus californianus) and Steller sea lions (Eumetopias jubatus) measured using single and multiple simultaneous auditory steady-state response methods. J Exp Biol 214:1138–1147PubMedCrossRefGoogle Scholar
  86. Mulsow JL, Finneran JJ, Houser DS (2011b) California sea lion (Zalophus californianus) aerial hearing sensitivity measured using auditory steady-state response and psychophysical methods. J Acoust Soc Am 129(4):2298–2306PubMedCrossRefGoogle Scholar
  87. Nachtigall PE, Pawloski J, Au WWL (2003) Temporary threshold shifts and recovery following noise exposure in the Atlantic bottlenosed dolphin (Tursiops truncatus). J Acoust Soc Am 113(6):3425–3429PubMedCrossRefGoogle Scholar
  88. Nachtigall PE, Supin AY, Pawloski J, Au WWL (2004) Temporary threshold shifts after noise exposure in the bottlenose dolphin (Tursiops truncatus) measured using evoked auditory potentials. Mar Mammal Sci 20(4):673–687CrossRefGoogle Scholar
  89. Nachtigall PE, Yuen MML, Mooney TA, Taylor KA (2005) Hearing measurements from a stranded infant Risso’s dolphin, Grampus griseus. J Exp Biol 208:4181–4188PubMedCrossRefGoogle Scholar
  90. Nachtigall PE, Mooney TA, Taylor KA, Miller LA, Rasmussen MH, Akamatsu T, Teilmann J, Linnenschmidt M, Vikingsson GA (2008) Shipboard measurements of the hearing of the white-beaked dolphin Lagenorhynchus albirostris. J Exp Biol 211:642–647PubMedCrossRefGoogle Scholar
  91. Navy US (2008) Southern California Range Complex: Final Environmental Impact Statement/Overseas Environmental Impact Statement. Department of the Navy, Washington, DCGoogle Scholar
  92. Nelken I, Jacobson G, Ahdut L, Ulanovsky N (eds) (2001) Neural correlates of co-modulation masking release in auditory cortex of cats. Physiological and psychophysical basis of auditory function. Shaker PublishingGoogle Scholar
  93. Nixon JC, Glorig A (1961) Noise-induced permanent threshold shift at 2000 cps and 4000 cps. J Acoust Soc Am 33(7):904–908CrossRefGoogle Scholar
  94. Nummela S (2008a) Hearing. In: Perrin WF, Wursig B, Thewissen JGM (eds) Encyclopedia of marine mammals, 2nd edn. Academic Press, Burlington, pp 553–561Google Scholar
  95. Nummela S (2008b) Hearing in aquatic mammals. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold. University of California Press, Berkeley, pp 211–224Google Scholar
  96. Parks SE, Johnson M, Nowacek D, Tyack PL (2011) Individual right whales call louder in increased environmental noise. Biol Lett 7:33–35PubMedCentralPubMedCrossRefGoogle Scholar
  97. Patterson RD (1976) Auditory filter shapes derived with noise stimuli. J Acoust Soc Am 59(3):640–654PubMedCrossRefGoogle Scholar
  98. Patterson RD, Moore BCJ (1986) Auditory filters and excitation patterns as representations of frequency resolution. In: Moore BCJ (ed) Frequency selectivity in hearing. Academic, London, pp 123–127Google Scholar
  99. Patuzzi R (1998) Exponential onset and recovery of temporary threshold shift after loud sound: evidence for long-term inactivation of mechano-electrical transduction channels. Hear Res 125:17–38PubMedCrossRefGoogle Scholar
  100. Popov VV, Supin AY, Klishin VO (1996) Frequency tuning curves of the dolphin’s hearing: envelope-following response study. J Comp Physiol A 178(4):571–578PubMedGoogle Scholar
  101. Popov VV, Supin AY, Wang D, Wank K, Xiao J, Li S (2005) Evoked-potential audiogram of the Yangtze finless porpoise Neophocaena phocaenoides asiaeorientalis (L). J Acoust Soc Am 117(5):2728–2731PubMedCrossRefGoogle Scholar
  102. Popov V, Supin A, Wang D, Wang K (2006) Nonconstant quality of auditory filters in the porpoises, Phocoena phocoena and Neophocaena phocaenoides (Cetacea, Phocoenidae). J Acoust Soc Am 119(5):3173–3180PubMedCrossRefGoogle Scholar
  103. Popov VV, Supin AY, Klishin VO, Tarakanov MB, Pletenko MG (2008) Evidence for double acoustic windows in the dolphin Tursiops truncatus. J Acoust Soc Am 123(1):552–560PubMedCrossRefGoogle Scholar
  104. Popov VV, Supin AY, Wang D, Wang K, Dong L, Wang S (2011) Noise-induced temporary threshold shift and recovery in Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis. J Acoust Soc Am 130(1):574–584PubMedCrossRefGoogle Scholar
  105. Pressnitzer D, Meddis R, Winter IM (2001) Physiological correlates of comodulation masking release in the mammalian ventral cochlear nucleus. J Neurosci 21(16):6377–6386PubMedGoogle Scholar
  106. Quaranta A, Portalatini P, Henderson D (1998) Temporary and permanent threshold shift: an overview. Scand Audiol 48:75–86Google Scholar
  107. Ridgway SH (1999) The cetacean central nervous system. In: Adelman G, Smith BH (eds) Elsevier’s Encyclopedia of Neuroscience, pp 352–357Google Scholar
  108. Ridgway SH, Carder DA, Smith RR, Kamolnick T, Schlundt CE, Elsberry WR (1997) Behavioral responses and temporary shift in masked hearing thresholds of bottlenose dolphins, Tursiops truncatus, to 1-second tones of 141–201 dB re 1 μPa. Naval Command, Control, and Ocean Surveillance Center, RDT&E Division, San DiegoGoogle Scholar
  109. Roitblat HL, Moore PWB, Helweg DA, Nachtigall PE (1993) Representation and processing of acoustic information in a biomimetic neural network. In: Meyer J-A, Roitblat HL, Wilson SW (eds) Animals to animats 2: stimulation of adaptive behavior. MIT press, pp 1–10Google Scholar
  110. Schlundt CE, Finneran JJ, Carder DA, Ridgway SH (2000) Temporary shift in masked hearing thresholds of bottlenose dolphins, Tursiops truncatus, and white whales, Delphinapterus leucas, after exposure to intense tones. J Acoust Soc Am 107(6):3496–3508PubMedCrossRefGoogle Scholar
  111. Schlundt CE, Dear RL, Green L, Houser DS, Finneran JJ (2007) Simultaneously measured behavioral and electrophysiological hearing thresholds in a bottlenose dolphin (Tursiops truncatus). J Acoust Soc Am 122(1):615–622PubMedCrossRefGoogle Scholar
  112. Schlundt CE, Finneran JJ, Branstetter BK, Dear RL, Houser DS, Hernandez E (2008) Evoked potential and behavioral hearing thresholds in nine bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am 123:3506(A)Google Scholar
  113. Schlundt CE, Dear RL, Houser DS, Bowles AE, Reidarson T, Finneran JJ (2011) Auditory evoked potentials in two short-finned pilot whales (Globicephala macrorhynchus). J Acoust Soc Am 129(2):1111–1116PubMedCrossRefGoogle Scholar
  114. Southall BL, Bowles AE, Ellison WT, Finneran JJ, Gentry RL, Greene CR Jr, Kastak D, Ketten DR, Miller JH, Nachtigall PE, Richardson WJ, Thomas JA, Tyack PL (2007) Marine mammal noise exposure criteria: initial scientific recommendations. Aquat Mammals 33(4):411–521CrossRefGoogle Scholar
  115. Supin AY, Popov VV (1986) Tonal hearing-masking curves in bottlenosed dolphins. Doklady Akademii Nauk SSSR 289:242–246PubMedGoogle Scholar
  116. Supin AY, Popov VV (1995) Envelope-following response and modulation transfer function in the dolphin’s auditory system. Hear Res 92:38–46PubMedCrossRefGoogle Scholar
  117. Trickey JS, Branstetter BB, Finneran JJ (2011) Auditory masking with environmental, comodulated, and Gaussian noise in bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am 128(6):3799–3804CrossRefGoogle Scholar
  118. Ward WD (1962) Damage-risk criteria for line spectra. J Acoust Soc Am 34(10):1610–1619CrossRefGoogle Scholar
  119. Ward WD (1997) Effects of high-intensity sound. In: Crocker MJ (ed) Encyclopedia of acoustics. Wiley, New York, pp 1497–1507CrossRefGoogle Scholar
  120. Ward WD, Cushing EM, Burns EM (1976) Effective quiet and moderate TTS: implications for noise exposure standards. J Acoust Soc Am 59(1):160–165PubMedCrossRefGoogle Scholar
  121. Yuen MML, Nachtigall PE, Breese M, Supin AY (2005) Behavioral and auditory evoked potential audiograms of a false killer whale (Pseudorca crassidens). J Acoust Soc Am 118(4):2688–2695PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.US Navy Marine Mammal ProgramSpace and Naval Warfare Systems Center PacificSan DiegoUSA
  2. 2.National Marine Mammal FoundationSan DiegoUSA

Personalised recommendations