Abstract
In semi-supervised learning framework, clustering has been proved a helpful feature to improve system performance in NER and other NLP tasks. However, there hasn’t been any work that employs clustering in word segmentation. In this paper, we proposed a new approach to compute clusters of characters and use these results to assist a character based Chinese word segmentation system. Contextual information is considered when we perform character clustering algorithm to address character ambiguity. Experiments show our character clusters result in performance improvement. Also, we compare our clusters features with widely used mutual information (MI). When two features integrated, further improvement is achieved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wang, Y., Kazama, J., Tsuruoka, Y., Chen, W., Zhang, Y., Torisawa, K.: Improving Chinese word segmentation and pos tagging with semi-supervised methods using large auto-analyzed data. In: Proceedings of the Fifth International Joint Conference on Natural Language Processing, IJCNLP 2011 (2011)
Sun, W., Xu, J.: Enhancing chinese word segmentation using unlabeled data. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 970–979. Association for Computational Linguistics (2011)
Miller, S., Guinness, J., Zamanian, A.: Name tagging with word clusters and discriminative training. In: Proceedings of HLT-NAACL, vol. 4. Citeseer (2004)
Liang, P.: Semi-supervised learning for natural language. PhD thesis, Massachusetts Institute of Technology (2005)
Brown, P.F., Desouza, P.V., Mercer, R.L., Pietra, V.J.D., Lai, J.C.: Class-based n-gram models of natural language. Computational Linguistics 18(4), 467–479 (1992)
Chen, W., Kazama, J., Uchimoto, K., Torisawa, K.: Improving dependency parsing with subtrees from auto-parsed data. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, vol. 2, pp. 570–579. Association for Computational Linguistics (2009)
Okazaki, N.: Crfsuite: a fast implementation of conditional random fields (crfs) (2007)
Turian, J., Ratinov, L., Bengio, Y.: Word representations: a simple and general method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 384–394. Association for Computational Linguistics (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, Y., Che, W., Liu, T. (2013). Enhancing Chinese Word Segmentation with Character Clustering. In: Sun, M., Zhang, M., Lin, D., Wang, H. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. NLP-NABD CCL 2013 2013. Lecture Notes in Computer Science(), vol 8202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41491-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-41491-6_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41490-9
Online ISBN: 978-3-642-41491-6
eBook Packages: Computer ScienceComputer Science (R0)