Abstract
Text categorization (TC) is a challenging issue, and the corresponding algorithms can be used in many applications. This paper addresses the online multi-category TC problem abstracted from the applications of online binary TC and batch multi-category TC. Most applications are concerned about the space-time performance of TC algorithms. Through the investigation of the token frequency distribution in an email collection and a Chinese web document collection, this paper re-examines the power law and proposes a random sampling ensemble Bayesian (RSEB) TC algorithm. Supported by a token level memory to store labeled documents, the RSEB algorithm uses a text retrieval approach to solve text categorization problems. The experimental results show that the RSEB algorithm can achieve the state-of-the-art performance at greatly reduced space-time requirements both in the TREC email spam filtering task and the Chinese web document classifying task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)
Tan, S., Cheng, X., Ghanem, M., Wang, B., Xu, H.: A novel refinement approach for text categorization. In: CIKM 2005: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 469–476 (2005)
Sculley, D., Wachman, G.M.: Relaxed online SVMs for spam filtering. In: SIGIR 2007: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 415–422 (2007)
Cormack, G.V.: Email spam filtering: a systematic review. Foundations and Trends in Information Retrieval 1(4), 335–455 (2008)
Han, E.-H(S.), Karypis, G.: Centroid-based document classification: Analysis and experimental results. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 424–431. Springer, Heidelberg (2000)
Zhang, T.: Regularized winnow methods. In: Advances in Neural Information Processing Systems, vol. 13, pp. 703–709 (2000)
Liu, W., Wang, T.: Online active multi-field learning for efficient email spam filtering. Knowledge and Information Systems 33(1), 117–136 (2012)
Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)
Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Review 51, 661–703 (2009)
Drucker, H., Wu, D., Vapnik, V.N.: Support vector machines for spam categorization. IEEE Transactions on Neural Networks 10(5), 1048–1054 (1999)
Liu, W., Wang, T.: Utilizing multi-field text features for efficient email spam filtering. International Journal of Computational Intelligence Systems 5(3), 505–518 (2012)
Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Surveys 38(2), Article 6 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, W., Wang, L., Yi, M. (2013). Power Law for Text Categorization. In: Sun, M., Zhang, M., Lin, D., Wang, H. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. NLP-NABD CCL 2013 2013. Lecture Notes in Computer Science(), vol 8202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41491-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-41491-6_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41490-9
Online ISBN: 978-3-642-41491-6
eBook Packages: Computer ScienceComputer Science (R0)