Skip to main content

Abstract

Text categorization (TC) is a challenging issue, and the corresponding algorithms can be used in many applications. This paper addresses the online multi-category TC problem abstracted from the applications of online binary TC and batch multi-category TC. Most applications are concerned about the space-time performance of TC algorithms. Through the investigation of the token frequency distribution in an email collection and a Chinese web document collection, this paper re-examines the power law and proposes a random sampling ensemble Bayesian (RSEB) TC algorithm. Supported by a token level memory to store labeled documents, the RSEB algorithm uses a text retrieval approach to solve text categorization problems. The experimental results show that the RSEB algorithm can achieve the state-of-the-art performance at greatly reduced space-time requirements both in the TREC email spam filtering task and the Chinese web document classifying task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)

    Article  Google Scholar 

  2. Tan, S., Cheng, X., Ghanem, M., Wang, B., Xu, H.: A novel refinement approach for text categorization. In: CIKM 2005: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 469–476 (2005)

    Google Scholar 

  3. Sculley, D., Wachman, G.M.: Relaxed online SVMs for spam filtering. In: SIGIR 2007: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 415–422 (2007)

    Google Scholar 

  4. Cormack, G.V.: Email spam filtering: a systematic review. Foundations and Trends in Information Retrieval 1(4), 335–455 (2008)

    Article  MathSciNet  Google Scholar 

  5. Han, E.-H(S.), Karypis, G.: Centroid-based document classification: Analysis and experimental results. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 424–431. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Zhang, T.: Regularized winnow methods. In: Advances in Neural Information Processing Systems, vol. 13, pp. 703–709 (2000)

    Google Scholar 

  7. Liu, W., Wang, T.: Online active multi-field learning for efficient email spam filtering. Knowledge and Information Systems 33(1), 117–136 (2012)

    Article  Google Scholar 

  8. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Review 51, 661–703 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Drucker, H., Wu, D., Vapnik, V.N.: Support vector machines for spam categorization. IEEE Transactions on Neural Networks 10(5), 1048–1054 (1999)

    Article  Google Scholar 

  11. Liu, W., Wang, T.: Utilizing multi-field text features for efficient email spam filtering. International Journal of Computational Intelligence Systems 5(3), 505–518 (2012)

    Article  Google Scholar 

  12. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Surveys 38(2), Article 6 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, W., Wang, L., Yi, M. (2013). Power Law for Text Categorization. In: Sun, M., Zhang, M., Lin, D., Wang, H. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. NLP-NABD CCL 2013 2013. Lecture Notes in Computer Science(), vol 8202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41491-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41491-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41490-9

  • Online ISBN: 978-3-642-41491-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics