Controlling Data Flow with a Policy-Based Programming Language for the Web

  • Thierry Sans
  • Iliano Cervesato
  • Soha Hussein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8208)

Abstract

It has become increasingly easy to write Web applications and other distributed programs by orchestrating invocations to remote third-party services. Increasingly, these third-party services themselves invoke other services and so on, making it difficult for the original application developer to anticipate where his/her data will end up. This may lead to privacy breaches or contractual violations. In this paper, we explore a simple distributed programming language that allows a web service provider to infer automatically where user data will travel to, and the developer to impose statically-checkable constraints on acceptable routes. For example, this may provide confidence that company data will not flow to a competitor, or that privacy-sensitive data goes through an anonymizer before being sent further out.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Fournet, C.: Access control based on execution history. In: The Internet Society, editor, Network and Distributed System Security Symposium, NDSS, San Diego, CA (2003)Google Scholar
  2. 2.
    Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Model checking usage policies. In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 19–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bartoletti, M., Degano, P., Ferrari, G.L.: History-based access control with local policies. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 316–332. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Collinson, M., Pym, D.J.: Algebra and logic for resource-based systems modelling. Mathematical Structures in Computer Science 19(5) (2009)Google Scholar
  5. 5.
    Collinson, M., Pym, D.J.: Algebra and logic for access control. Formal Aspects of Computing 22(2) (2010)Google Scholar
  6. 6.
    Cranor, L.F., Reagle, J.: The platform for privacy preferences. Communications of the ACM 42(2), 48–55 (1999)CrossRefGoogle Scholar
  7. 7.
    Murphy VII, T.: Modal Types for Mobile Code. PhD thesis, Carnegie Mellon University, Available as technical report CMU-CS-08-126 (January 2008)Google Scholar
  8. 8.
    Murphy VII, T., Crary, K., Harper, R.: Type-safe distributed programming with ML5. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 108–123. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Myers, A.C.: JFlow: practical mostly-static information flow control. In: POPL 1999: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 228–241. ACM, New York (1999)CrossRefGoogle Scholar
  10. 10.
    Pearson, S.: Trusted Computing Platforms: TCPA Technology in Context. Prentice Hall PTR (July 2002)Google Scholar
  11. 11.
    Pfenning, F., Schürmann, C.: System description: Twelf — a meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Ferrante, J., Cytron, R., Heights, Y., Rosen, B.K., Wegman Mark, N., Kenneth Zadeck, F.: Efficiently computing static single assignment form and the control dependence graph. ACM Transactions on Programming Languages and Systems, TOPLAS (1991)Google Scholar
  13. 13.
    Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Journal on Selected Areas in Communications 21(1), 5–19 (2003)CrossRefGoogle Scholar
  14. 14.
    Sans, T., Cervesato, I.: QWeSST for Type-Safe Web Programming. In: Farwer, B. (ed.) Third International Workshop on Logics, Agents, and Mobility — LAM 2010, Edinburgh, Scotland, UK (2010)Google Scholar
  15. 15.
    Sans, T., Cervesato, I.: Type-Safe Web Programming in QWeSST. Technical Report CMU-CS-10-125, Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA (June 2010)Google Scholar
  16. 16.
    Swamy, N., Corcoran, B.J., Hicks, M.: Fable: A language for enforcing user-defined security policies. In: IEEE Symposium on Security and Privacy, pp. 369–383 (2008)Google Scholar
  17. 17.
    Zheng, L., Myers, A.C.: Dynamic security labels and static information flow control. International Journal of Information Security 6(2), 67–84 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thierry Sans
    • 1
  • Iliano Cervesato
    • 1
  • Soha Hussein
    • 1
  1. 1.Carnegie Mellon UniversityUSA

Personalised recommendations