Resilience of Process Control Systems to Cyber-Physical Attacks

  • Marina Krotofil
  • Alvaro A. Cárdenas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8208)


In this work we investigate the matter of “secure control” – a novel research direction capturing security objectives specific to Industrial Control Systems (ICS). We provide an empirical analysis of the well known Tennessee Eastman process control challenge problem to gain insights into the behavior of a physical process when confronted with cyber-physical attacks. In particular, we investigate the impact of integrity and DoS attacks on sensors which measure physical phenomena. We also demonstrate how the results of process-aware security analysis can be applied to improve process resilience to cyber-physical attacks.


Cyber-physical attacks Tennessee-Eastman process simulations secure control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abnormal Situation Management (ASM) Consortium: Official website, (retrieved: June 2013)
  2. 2.
    Anderson, R., Fuloria, S.: Security economics and critical national infrastructure. In: Economics of Information Security and Privacy, pp. 55–66 (2010)Google Scholar
  3. 3.
    U.S. Chemical Safety Board: Runaway: Explosion at T2 laboratories (2007), (2009) (retrieved: May 2013)
  4. 4.
    Cárdenas, A.A., Amin, S., Lin, Z.S., Huang, Y.L., Huang, C.Y., Sastry, S.: Attacks against process control systems: risk assessment, detection, and response. In: Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security, ASIACCS 2011, pp. 355–366 (2011)Google Scholar
  5. 5.
    Chabukswar, R., Sinopoli, B., Karsai, G., Giani, A., Neema, H., Davis, A.: Simulation of network attacks on SCADA systems. In: First Workshop on Secure Control Systems (2010)Google Scholar
  6. 6.
    Chien, E., O’Gorman, G.: The Nitro attacks: Stealing secrets from the chemical industry. Tech. rep., Symantec (2011)Google Scholar
  7. 7.
    Downs, J.J., Vogel, E.F.: A plant-wide industrial process control problem. Computers & Chemical Engineering 17(3), 245–255 (1993)CrossRefGoogle Scholar
  8. 8.
    Genge, B., Siaterlis, C., Hohenadell, M.: Impact of network infrastructure parameters to the effectiveness of cyber attacks against industrial control systems. International Journal of Computers, Communications & Control 7(4), 673–686 (2012)Google Scholar
  9. 9.
    Genge, B., Siaterlis, C.: An experimental study on the impact of network segmentation to the resilience of physical processes. In: Bestak, R., Kencl, L., Li, L.E., Widmer, J., Yin, H. (eds.) NETWORKING 2012, Part I. LNCS, vol. 7289, pp. 121–134. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Gollmann, D.: Veracity, plausibility, and reputation. In: Askoxylakis, I., Pöhls, H.C., Posegga, J. (eds.) WISTP 2012. LNCS, vol. 7322, pp. 20–28. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Huang, Y., Cárdenas, A., Amin, S., Lin, S.Z., Tsai, H.Y., Sastry, S.S.: Understanding the physical and economic consequences of attacks against control systems. International Journal of Critical Infrastructure Protection 2(3), 72–83 (2009)CrossRefGoogle Scholar
  12. 12.
    libmodbus Project: Official website, (retrieved: June 2013)
  13. 13.
    Liptak, B.G.: Instrument Engineers’ Handbook. Process Control and Optimizatiol, vol. 2. CRC Press (2005)Google Scholar
  14. 14.
    Luyben, W.L., Tyreus, B.D., Luyben, M.L.: PlantwideProcess Control. McGraw-Hill (1998)Google Scholar
  15. 15.
    McAvoy, T., Ye, N.: Base control for the Tennessee Eastman problem. Computers & Chemical Engineering 18(5), 383–413 (1994)CrossRefGoogle Scholar
  16. 16.
    McEvoy, T., Wolthusen, S.: A plant-wide industrial process control security problem. In: Critical Infrastructure Protection V, vol. 367, pp. 47–56 (2011)Google Scholar
  17. 17.
    McIntyrel, C.: Using Smart Instrumentation. Plant Engineering (2011)Google Scholar
  18. 18.
    Ricker, N.L.: Tennessee Eastman Challenge Archive, (retrieved: May 2013)
  19. 19.
    Ricker, N.L.: Model predictive control of a continuous, nonlinear, two-phase reactor. Journal of Process Control 3(2), 109–123 (1993)CrossRefGoogle Scholar
  20. 20.
    Ricker, N.: Optimal steady-state operation of the Tennessee Eastman challenge process. Computers & Chemical Engineering 19(9), 949–959 (1995)CrossRefGoogle Scholar
  21. 21.
    Ricker, N., Lee, J.: Nonlinear model predictive control of the Tennessee Eastman challenge process. Computers & Chemical Engineering 19(9), 961–981 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marina Krotofil
    • 1
  • Alvaro A. Cárdenas
    • 2
  1. 1.Hamburg University of TechnologyHamburgGermany
  2. 2.University of Texas at DallasRichardsonUSA

Personalised recommendations