• Pierre M. Nugues
Part of the Cognitive Technologies book series (COGTECH)


The grammatical concepts we have seen so far apply mostly to isolated words, phrases, or sentences. Texts and conversations, either full or partial, are out of their scope. Yet to us, human readers, writers, and speakers, language goes beyond the simple sentence. It is now time to describe models and processing techniques to deal with a succession of sentences. Although analyzing texts or conversations often requires syntactic and semantic treatments, it goes further. In this chapter, we shall make an excursion to the discourse side, that is, paragraphs, texts, and documents. In the next chapter, we shall consider dialogue, that is, a spoken or written interaction between a user and a machine.


Noun Phrase Head Noun Proper Noun Discourse Referent Coreference Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11), 832–843.CrossRefzbMATHGoogle Scholar
  2. Allen, J. F. (1984). Towards a general theory of action and time. Artificial Intelligence, 23(2), 123–154.CrossRefzbMATHGoogle Scholar
  3. Bagga, A., & Baldwin, B. (1998). Algorithms for scoring coreference chains. In Proceedings of the linguistic coreference workshop at the first international conference on language resources and evaluation, Granada (pp. 563–566).Google Scholar
  4. Björkelund, A., & Nugues, P. (2011). Exploring lexicalized features for coreference resolution. In Proceedings of the 15th conference on computational natural language learning (CoNLL-2011): Shared task, Portland (pp. 45–50).Google Scholar
  5. Bunescu, R., & Paşca, M. (2006). Using encyclopedic knowledge for named entity disambiguation. In Proceedings of the 11th conference of the European chapter of the association for computational linguistics, Trento (pp. 9–16). Association for Computational Linguistics.Google Scholar
  6. Carlson, L., Marcu, D., & Okurowski, M. (2003). Building a discourse-tagged corpus in the framework of rhetorical structure theory. In Current and new directions in discourse and dialogue (Text, speech and language technology, Vol. 22, pp. 85–112). Dordrecht: Springer.Google Scholar
  7. Corbett, E. P. J., & Connors, R. J. (1999). Classical rhetoric for the modern student (4th ed.). New York, Oxford University Press.Google Scholar
  8. Corston-Oliver, S. (1998). Computing representations of the structure of written discourse. PhD thesis, Linguistics Department, the University of California, Santa Barbara.Google Scholar
  9. Coulthard, M. (1985). An introduction to discourse analysis (2nd ed.). Harlow: Longman.Google Scholar
  10. Cucerzan, S. (2007). Large-scale named entity disambiguation based on wikipedia data. In Proceedings of the 2007 joint conference on empirical methods in natural language processing and computational natural language learning, Prague (pp. 708–716). Association for Computational Linguistics.Google Scholar
  11. Davidson, D. (1966). The logical form of action sentences. In N. Rescher (Ed.), The logic of decision and action. Pittsburgh: University of Pittsburgh Press.Google Scholar
  12. Ducrot, O., & Schaeffer, J.-M. (Eds.). (1995). Nouveau dictionnaire encyclopédique des sciences du langage. Paris: Éditions du Seuil.Google Scholar
  13. Finkel, J. R., Grenager, T., & Manning, C. (2005). Incorporating non-local information into information extraction systems by Gibbs sampling. In Proceedings of the 43nd annual meeting of the association for computational linguistics (ACL 2005), Ann Arbor (pp. 363–370).Google Scholar
  14. Gagnon, M., & Lapalme, G. (1996). From conceptual time to linguistic time. Computational Linguistics, 22(1), 91–127.Google Scholar
  15. Gosselin, L. (1996). Sémantique de la temporalité en français: Un modèle calculatoire et cognitif du temps et de l’aspect. Louvain-la-Neuve: Duculot.Google Scholar
  16. Grosz, B. J., Joshi, A. K., & Weinstein, S. (1995). Centering: A framework for modeling the local coherence of discourse. Computational Linguistics, 21(2), 203–225.Google Scholar
  17. Grosz, B. J., & Sidner, C. L. (1986). Attention, intention, and the structure of discourse. Computational Linguistics, 12(3), 175–204.Google Scholar
  18. Hirschman, L., & Chinchor, N. (1997). MUC-7 coreference task definition. Technical report, Science Applications International Corporation.Google Scholar
  19. Hobbs, J. R., Appelt, D. E., Bear, J., Israel, D., Kameyama, M., Stickel, M., & Tyson, M. (1997). FASTUS: A cascaded finite-state transducer for extracting information from natural-language text. In E. Roche & Y. Schabes (Eds.), Finite-state language processing (chapter 13, pp. 383–406). Cambridge: MIT.Google Scholar
  20. Hoffart, J., Yosef, M. A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., Taneva, B., Thater, S., & Weikum, G. (2011). Robust disambiguation of named entities in text. In Proceedings of the 2011 conference on empirical methods in natural language processing, Edinburgh (pp. 782–792).Google Scholar
  21. Huls, C., Claassen, W., & Bos, E. (1995). Automatic referent resolution of deictic and anaphoric expressions. Computational Linguistics, 21(1), 59–79.Google Scholar
  22. Ingria, B., & Pustejovsky, J. (2004). TimeML: A formal specification language for events and temporal expressions. Cited April 13, 2010, from
  23. Johansson, R., Berglund, A., Danielsson, M., & Nugues, P. (2005). Automatic text-to-scene conversion in the traffic accident domain. In IJCAI-05, proceedings of the nineteenth international joint conference on artificial intelligence, Edinburgh (pp. 1073–1078).Google Scholar
  24. Kameyama, M. (1997). Recognizing referential links: An information extraction perspective. In R. Mitkov & B. Boguraev (Eds.), Proceedings of ACL workshop on operational factors in practical, robust anaphora resolution for unrestricted texts, Madrid (pp. 46–53).Google Scholar
  25. Kamp, H., & Reyle, U. (1993). From discourse to logic: Introduction to modeltheoretic semantics of natural language, formal logic and discourse representation theory. Dordrecht: Kluwer Academic.Google Scholar
  26. Luo, X. (2005). On coreference resolution performance metrics. In Proceedings of human language technology conference and conference on empirical methods in natural language processing, Vancouver (pp. 25–32).Google Scholar
  27. Mann, W. C., & Thompson, S. A. (1987). Rhetorical structure theory: A theory of text organization. Technical report RS-87-190, Information Sciences Institute of the University of Southern California.Google Scholar
  28. Mann, W. C., & Thompson, S. A. (1988). Rhetorical structure theory: Toward a functional theory of text organization. Text, 8, 243–281.Google Scholar
  29. Marcu, D. (1997). The rhetorical parsing, summarization, and generation of natural language texts. PhD thesis, Department of Computer Science, University of Toronto.Google Scholar
  30. Perelman, C., & Olbrechts-Tyteca, L. (1976). Traité de l’argumentation: la nouvelle rhétorique. Brussels: Éditions de l’Université de Bruxelles.Google Scholar
  31. Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., & Zhang, Y. (2012). CoNLL-2012 shared task: Modeling multilingual unrestricted coreference in OntoNotes. In Proceedings of the joint conference on EMNLP and CoNLL: Shared task, Jeju Island (pp. 1–40). Association for Computational Linguistics.Google Scholar
  32. Pradhan, S., Ramshaw, L., Marcus, M., Palmer, M., Weischedel, R., & Xue, N. (2011). CoNLL-2011 shared task: Modeling unrestricted coreference in OntoNotes. In Proceedings of the fifteenth conference on computational natural language learning: Shared task, Portland (pp. 1–27). Association for Computational Linguistics.Google Scholar
  33. Prasad, R., Dinesh, N., Lee, A., Miltsakaki, E., Robaldo, L., Joshi, A., & Webber, B. (2008). The Penn discourse treebank 2.0. In Proceedings of the 6th international conference on language resources and evaluation, Marrakech.Google Scholar
  34. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.Google Scholar
  35. Raghunathan, K., Lee, H., Rangarajan, S., Chambers, N., Surdeanu, M., Jurafsky, D., & Manning, C. (2010). A multi-pass sieve for coreference resolution. In Proceedings of the 2010 conference on empirical methods in natural language processing, Cambridge, MA (pp. 492–501). Association for Computational Linguistics.Google Scholar
  36. Reboul, O. (1994). Introduction à la rhétorique: théorie et pratique (2nd ed.). Paris: Presses universitaires de France.Google Scholar
  37. Reichenbach, H. (1947). Elements of symbolic logic. New York: Macmillan.Google Scholar
  38. Schiffrin, D. (1994). Approaches to discourse (Number 8 in Blackwell textbooks in linguistics). Oxford: Blackwell.Google Scholar
  39. Simone, R. (2007). Fondamenti di linguistica (10th ed.). Bari: Laterza.Google Scholar
  40. Singhal, A. (2012). Introducing the knowledge graph: Things, not strings. Official Google Blog. Retrieved November 7, 2013, from
  41. Soon, W. M., Ng, H. T., & Lim, D. C. Y. (2001). A machine learning approach to coreference resolution of noun phrases. Computational Linguistics, 27(4), 521–544.CrossRefGoogle Scholar
  42. Suri, L. Z., & McCoy, K. F. (1994). RAFT/RAPR and centering: A comparison and discussion of problems related to processing complex sentences. Computational Linguistics, 20(2), 301–317.Google Scholar
  43. Ter Meulen, A. (1995). Representing time in natural language. The dynamic interpretation of tense and aspect. Cambridge, MA: MIT.Google Scholar
  44. Tesnière, L. (1966). Éléments de syntaxe structurale (2nd ed.). Paris: Klincksieck.Google Scholar
  45. Tjong Kim Sang, E. F., & De Meulder, F. (2003). Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In Proceedings of CoNLL-2003, Edmonton (pp. 142–147).Google Scholar
  46. Vendler, Z. (1967). Linguistics in philosophy. Ithaca: Cornell University Press.Google Scholar
  47. Vilain, M., Burger, J., Aberdeen, J., Connolly, D., & Hirschman, L. (1995). A model-theoretic coreference scoring scheme. In Proceedings of the conference on sixth message understanding conference (MUC-6), Columbia (pp. 45–52).Google Scholar
  48. Zhang, T., & Johnson, D. (2003). A robust risk minimization based named entity recognition system. In Proceedings of CoNLL-2003, Edmonton (pp. 204–207).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pierre M. Nugues
    • 1
  1. 1.Department of Computer ScienceLund UniversityLundSweden

Personalised recommendations