Skip to main content

Air Flow Sensing in Bats

  • Chapter
  • First Online:
Flow Sensing in Air and Water

Abstract

Bats are the only mammals capable of powered flight, and impress with complicated aerial maneuvers like tight turns, hovering, or perching upside-down. The bat wing membrane is covered with microscopically small hairs that are associated with a variety of tactile receptors at the follicle. The directionality profile of neuronal responses to air flow—as measured in the somatosensory cortex of the bats—indicates that the hairs respond strongest to reverse airflow, and might therefore act as stall detectors. We found that depilation of different functional regions of the wing membrane alters flight behavior in obstacle avoidance tasks by reducing aerial maneuverability, as indicated by wider turning angles and increased flight speed. We provide here for the first time electrophysiological and behavioral data showing that bat wing hairs are involved in sensorimotor flight control by providing aerodynamic feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CX:

Cerebral cortex

D:

Digit

IC:

Inferior colliculus

IFM:

Interfemoral membrane

K20:

Monoclonal keratin antibody

OB:

Olfactory bulb

S1:

Primary somatosensory cortex

SC:

Superior colliculus

References

  • Ackert JE (1914) The innervations of the integument of chiroptera. J Morphol 25:301–334

    Article  Google Scholar 

  • Adrian ED (1941) Afferent discharges to the cerebral cortex from peripheral sense organs. J Physiol 100:159–191

    CAS  PubMed  Google Scholar 

  • Ai H, Yoshida A, Yokohari F (2010) Vibration receptive sensilla on the wing margins of the silkworm moth Bombyx mori. J Insect Physiol 56:236–246

    Article  CAS  PubMed  Google Scholar 

  • Bullen RD, McKenzie NL (2008) Aerodynamic cleanliness in bats. Austral J Zool 56:281–296

    Article  Google Scholar 

  • Casas J, Steinmann T, Krijnen G (2010) Why do insects have such a high density of flow-sensing hairs? Insights from the hydromechanics of biomimetic MEMS sensors. J R Soc Interface 7:1487–1495

    Article  PubMed Central  PubMed  Google Scholar 

  • Chadha M, Moss CF, Sterbing-D’Angelo SJ (2010) Organization of the primary somatosensory cortex and wing representation in the Big Brown Bat, Eptesicus fuscus. J Comp Physiol A 197:89–96

    Article  Google Scholar 

  • Chadha M, Marshall KL, Sterbing-D’Angelo SJ, Lumpkin EA, Moss CF (2012) Tactile sensing along the wing of the echolocating bat. Eptesicus fuscus. Soc Neurosci Abstr 523:03

    Google Scholar 

  • Cummins B, Gedeon T, Klapper I, Cortez R (2007) Interaction between arthropod filiform hairs in a fluid environment. J Theor Biol 247:266–280

    Article  PubMed Central  PubMed  Google Scholar 

  • Debelica A, Thies ML (2009) Atlas and key to the hair of terrestrial texas mammals. In: Robert J Baker (ed) Special publications of the Museum of Texas Tech University, vol 55. Museum of Texas Tech University, Lubbock, USA

    Google Scholar 

  • Dickinson MH (1990) Comparison of encoding properties of campaniform sensilla on the fly wing. J Exp Biol 151:245–261

    Google Scholar 

  • Dickinson BT (2010) Hair receptor sensitivity to changes in laminar boundary layer shape. Bioinspir Biomim 5:1–11

    Article  Google Scholar 

  • Haeberle H, Fujiwara M, Chuang J et al (2004) Molecular profiling reveals synaptic release machinery in merkel cells. Proc Natl Acad Sci 101:14503–14508

    Article  CAS  PubMed  Google Scholar 

  • Halata Z (1993) Sensory innervation of the hairy skin (light-and electronmicroscopic study). J Invest Dermatol 101:75S–81S

    Article  CAS  PubMed  Google Scholar 

  • Haskell PT (1958) Physiology of some wind-sensitive receptors of the desert locust (Schistocerca gregaria). XVth Int Zool Congr, London

    Google Scholar 

  • Hedenström A, Johansson LC, Wolf M, von Busse R, Winter Y, Spedding GR (2007) Bat flight generates complex aerodynamic tracks. Science 316:894–897

    Article  PubMed  Google Scholar 

  • Heys J, Gedeon T, Knott B, Kim Y (2008) Modeling arthropod filiform hair motion using the penalty immersed boundary method. J Biomech 41:977–984

    Article  CAS  PubMed  Google Scholar 

  • Hoerster W (1990) Histological and electrophysiological investigations on the vibration-sensitive receptors (Herbst corpuscles) in the wing of the pigeon (Columba livia). J Comp Physiol A 166:663–673

    Google Scholar 

  • Maxim H (1912) The sixth sense of the bat. Sir Hiram’s contention. The possible prevention of sea collisions. Sci Am 27:80–81

    Article  Google Scholar 

  • Moll I, Kuhn C, Moll R (1995) Cytokeratin-20 is a general marker of cutaneous merkel cells while certain neuronal proteins are absent. J Invest Dermat 104:910–915

    Article  CAS  Google Scholar 

  • Muijres FT, Johansson LC, Barfield R, Wolf M, Spedding GR, Hedenström A (2008) Leading-edge vortex improves lift in slow-flying bats. Science 319:1250–1253

    Article  CAS  PubMed  Google Scholar 

  • Nachtigall W (1979) Gliding flight in petaurus-breviceps-papuanus. Model measurements of the influence of fur cover on flow and generation of aerodynamic force components. J Comp Physiol 133:339–349

    Article  Google Scholar 

  • Necker R (1985) Receptors in the wing of the pigeon and their possible role in bird flight. In: Nachtigall W (ed) Biona Rep 3: Vogelflug. Fischer, New York

    Google Scholar 

  • Nurse CA, Mearow KM, Holmes M, Visheau B, Diamond J (1983) Merkel cell distribution in the epidermis as determined by quinacrine fluorescence. Cell Tissue Res 228:511–524

    Article  CAS  PubMed  Google Scholar 

  • Pflueger HJ, Tautz J (1982) Air movement sensitive hairs and interneurons in locusta migratoria. J Comp Physiol A 145:369–380

    Article  Google Scholar 

  • Pinkus F (1902) Ueber einen bisher unbekannten nebenapparat am haarsystem des menschen: haarscheiben. Derm Z 9:465–499

    Article  Google Scholar 

  • Pinkus F (1905) Ueber Hautsinnesorgane neben dem menschlichen Haar (Haarscheiben) and ihre vergleichend-anatomische bedeutung. Arch Mikrosk Anat 65:121–179

    Article  Google Scholar 

  • Rayner JMV (1979a) Vortex theory of animal flight. 1. vortex wake of a hovering animal. J Fluid Mech 91:697–730

    Article  Google Scholar 

  • Rayner JMV (1979b) Vortex theory of animal flight. 2. Forward flight of birds. J Fluid Mech 91:731–763

    Article  Google Scholar 

  • Shimozawa T, Kanou M (1984) Variety of filiform hairs: range fractionation by sensory afferents and cercal interneurons of a cricket. J Comp Physiol A 155:485–493

    Article  Google Scholar 

  • Smith KR (1977) The haarscheibe. J Invest Dermat 69:68–74

    Article  Google Scholar 

  • Sterbing-D’Angelo S, Chadha M, Chiu C, Falk B, Xian W, Barcelo J, Zook JM, Moss CF (2011) Bat wing sensors support flight control. Proc Natl Acad Soc 108:11291–11296

    Article  Google Scholar 

  • Stockwell EF (2001) Morphology and flight maneuverability in new world leaf-nosed bats (chiroptera: phyllostomidae). J Zool 254:505–514

    Article  Google Scholar 

  • Swartz SM, Bishop K, Ismael-Aguirre MF (2005) Dynamic complexity of wing form in bats: implications for flight performance. In: Zubaid A, McCracken G, Kunz T (eds) Functional and evolutionary ecology of bats. Oxford Press, Oxford

    Google Scholar 

  • Swartz SM, Groves MS, Kim HD, Walsh WR (1996) Mechanical properties of bat wing membrane skin. J Zool 239:357–378

    Article  Google Scholar 

  • Voigt CC, Winter Y (1999) Energetic cost of hovering flight in nectar-feeding bats (phyllostomidae: glossophaginae) and its scaling in moths, birds and bats. J Comp Physiol B 169:38–48

    Article  CAS  PubMed  Google Scholar 

  • Wagner P, Neinhuis C, Barthlott W (1996) Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zool 77:213–225

    Article  Google Scholar 

  • Williams CM, Kramer EM (2010) The advantages of a tapered whisker. PLoS ONE 5: Article Number: e8806. doi:10.1371/journal.pone.0008806

  • Winter Y, Voigt C, Von Helversen O (1998) Gas exchange during hovering flight in a nectar-feeding bat, Glossophaga soricina. J Exp Biol 201:237–244

    CAS  PubMed  Google Scholar 

  • Wise LZ, Pettigrew JD, Calford MB (1986) Somatosensory cortical representation in the Australian ghost bat, Macroderma gigas. J Comp Neurol 248:257–262

    Article  CAS  PubMed  Google Scholar 

  • Zook JM, Fowler BC (1986) A specialized mechanosensory array of the bat wing. Myotis 23–24:1–36

    Google Scholar 

  • Zook JM (2005) The neuroethology of touch in bats: cutaneous receptors of the wing. Soc Neurosci Abstr 78:21

    Google Scholar 

  • Zook JM (2006) Somatosensory adaptations of flying mammals, In: Kaas JH (ed) Evolution of nervous systems vol 3. Academic Press, Oxford

    Google Scholar 

Download references

Acknowledgments

This study was sponsored by air force office of scientific research (AFOSR), MURI grant “Bio-inspired flight for micro-air vehicles.” Data collected under research protocol, “Somatosensory signaling for flight control,” approved by the University of Maryland Institutional Animal Care and Use Committee. We thank Mohit Chadha, Wei Xian, Ben Falk, and Aaron Reynolds for contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne J. Sterbing-D’Angelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sterbing-D’Angelo, S.J., Moss, C.F. (2014). Air Flow Sensing in Bats. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_8

Download citation

Publish with us

Policies and ethics