Skip to main content

Flow Sensing in Sharks: Lateral Line Contributions to Navigation and Prey Capture

  • Chapter
  • First Online:
Book cover Flow Sensing in Air and Water

Abstract

Elasmobranchs (sharks, skates, and rays), like other fishes, possess a mechanosensory lateral line system that detects weak water motions. The anatomy of the lateral line system of elasmobranchs is subtly different from that of bony fishes. Found along the head and body in species-specific patterns, it is composed of neuromasts that lie in grooves or pits on the surface of the skin, as well as neuromasts that line fluid-filled subepidermal canals which may be open to the environment via pores or may be closed (nonpored). While there is a growing wealth of knowledge on lateral line function in bony fishes, comparatively less is known about the behavioral role of this sensory system in elasmobranchs. Recent research suggests that in sharks, as in bony fishes, the lateral line functions in navigation and obstacle avoidance, orientation to currents, and feeding behavior, where it contributes to prey tracking, prey localization, and capture precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abboud JL, Coombs S (2000) Mechanosensory-based orientation to elevated prey by a benthic fish. Mar Freshw Behav Physiol 33:261–279

    Article  Google Scholar 

  • Abdel-Latif H, Hassan ES, von Campenhausen C (1990) Sensory performance of blind Mexican cave fish after destruction of the canal neuromasts. Naturwissenschaften 77:237–239

    Article  CAS  PubMed  Google Scholar 

  • Arnold GP (1974) Rheotropism in fishes. Biol Rev 49:515–576

    Article  CAS  PubMed  Google Scholar 

  • Atema J (1985) Chemoreception in the sea: adaptations of chemoreceptors and behaviour to aquatic stimulus conditions. Symp Soc Exp Biol 39:386–423

    Google Scholar 

  • Atema J (1996) Eddy chemotaxis and odor landscapes: exploration of nature with animal sensors. Biol Bull 191:129–138

    Google Scholar 

  • Baker CF, Montgomery JC (1999) The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus. J Comp Physiol A 184:519–527

    Article  Google Scholar 

  • Barry MA, Boord RL (1984) The spiracular organ of sharks and skates: anatomical evidence indicating a mechanoreceptive role. Science 226:990–992

    Article  CAS  PubMed  Google Scholar 

  • Barry MA, White RL, Bennett MVL (1988a) The elasmobranch spiracular organ I. Morphological studies. J Comp Physiol A 163:85–92

    Article  CAS  PubMed  Google Scholar 

  • Barry MA, White RL, Bennett MVL (1988b) The elasmobranch spiracular organ II. Physiological studies. J Comp Physiol A 163:93–98

    Article  CAS  Google Scholar 

  • Blaxter JHS, Batty RS (1985) Herring behaviour in the dark: responses to stationary and continuously vibrating obstacles. J Mar Biol Assoc UK 65:1031–1049

    Article  Google Scholar 

  • Blaxter JHS, Fuiman LA (1989) Function of the free neuromasts of marine teleost larvae. In: Coombs S, Gorner P, Munz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 481–499

    Chapter  Google Scholar 

  • Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs and crustaceans. J Comp Physiol A 168:749–757

    CAS  PubMed  Google Scholar 

  • Boord RL, Campbell CBG (1977) Structural and functional organization of the lateral line system of sharks. Am Zool 17:431–441

    Google Scholar 

  • Budker P (1958) Les organes sensoriels cutanés des sélaciens. In: Grassé PP (ed) Traité de Zoologie. Anatomie, Systémique, Biologie, vol Tome XIII. Agnathes et Poissons. Masson et Cie, Paris, pp 1033–1062

    Google Scholar 

  • Carlson JK, Goldman KJ, Lowe CG (2004) Metabolism, energetic demand, and endothermy. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, Boca Raton

    Google Scholar 

  • Chagnaud BP, Brücker C, Hofmann MH, Bleckmann H (2008) Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations. J Neurosci 28:4479–4487

    Article  CAS  PubMed  Google Scholar 

  • Chu YT, Wen MC (1979) Monograph of fishes of China (No. 2): a study of the lateral-line canals system and that of Lorenzini ampullae and tubules of elasmobranchiate fishes of China. Science and Technology Press, Shanghai

    Google Scholar 

  • Coombs S, Conley RA (1997) Dipole source localization by mottled sculpin. I. Approach strategies. J Comp Physiol A 180:387–399

    Article  CAS  PubMed  Google Scholar 

  • Crow GL, Brock JA, Kaiser S (1995) Fusarium solani infection of the lateral line canal system in captive scalloped hammerhead sharks (Sphyrna lewini) in Hawaii. J Wildl Dis 31:562–565

    Article  CAS  PubMed  Google Scholar 

  • Dijkgraaf S (1962) The functioning and significance of the lateral-line organs. Biol Rev 28:51–105

    Google Scholar 

  • Ewart JC, Mitchell HC (1892) On the lateral sense organs of elasmobranchs. II. The sensory canals of the common skate (Raja batis). Trans R Soc Edinb 37:87–105

    Article  Google Scholar 

  • Faucher K, Parmentier E, Becco C, Vandewalle N, Vandewalle P (2010) Fish lateral system is required for accurate control of shoaling behaviour. Anim Behav 79:679–687

    Article  Google Scholar 

  • Ferry-Graham LA, Wainwright PC, Lauder GV (2003) Quantification of flow during suction feeding in bluegill sunfishes. Zoology 106:159–168

    Article  PubMed  Google Scholar 

  • Fouts WR, Nelson DR (1999) Prey capture by the Pacific angle shark, Squatina californica: visually mediated strikes and ambush-site characteristics. Copeia 1999:304–312

    Article  Google Scholar 

  • Gardiner JM (2012) Multisensory Integration in Shark Feeding Behavior. Dissertation, University of South Florida, Tampa

    Google Scholar 

  • Gardiner JM, Atema J (2007) Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. J Exp Biol 210:1925–1934

    Article  PubMed  Google Scholar 

  • Gardiner JM, Hueter RE, Maruska KP, Sisneros JA, Casper BM, Mann DA, Demski LS (2012) Sensory physiology and behavior of elasmobranchs. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives, vol. I, 2nd edn. CRC Press, Boca Raton, pp 349–401

    Google Scholar 

  • Gardiner JM, Motta PJ (2012) Largemouth bass (Micropterus salmoides) switch feeding modalities in response to sensory deprivation. Zoology 115:78–83

    Article  PubMed  Google Scholar 

  • Gilbert PW (1963) The visual apparatus of sharks. In: Gilbert PW (ed) Sharks and survival. DC Heath & Co, Boston, pp 283–326

    Google Scholar 

  • Hama K, Yamada Y (1977) Fine structure of the ordinary lateral line organ. 2. The lateral line canal organ of spotted shark, Mustelus manazo. Cell Tiss Res 176:23–36

    Article  CAS  Google Scholar 

  • Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. J Exp Biol 207:1585–1596

    Article  PubMed  Google Scholar 

  • Hanke W, Brücker C, Bleckmann H (2000) The ageing of the low frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–2000

    CAS  PubMed  Google Scholar 

  • Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: Coombs S, Gorner P, Munz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 217–228

    Chapter  Google Scholar 

  • Higham TE, Day SW, Wainwright PC (2005) Sucking while swimming: evaluating the effects of ram speed on suction generation in bluegill sunfish Lepomis macrochirus using digital particle image velocimetry. J Exp Biol 208:2653–2660

    Article  PubMed  Google Scholar 

  • Higham TE, Day SW, Wainwright PC (2006) Multidimensional analysis of suction feeding performance in fishes: fluid speed, acceleration, strike accuracy, and the ingested volume of water. J Exp Biol 209:2713–2725. doi:10.1242/jeb.02315

    Article  PubMed  Google Scholar 

  • Hobson ES (1963) Feeding behavior in three species of sharks. Pac Sci 17:171–194

    Google Scholar 

  • Hodgson ES, Mathewson RF (1971) Chemosensory orientation in sharks. Ann N Y Acad Sci 188:175–182

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra D, Janssen J (1985) Non-visual feeding behaviour of the mottled sculpin, Cottus bairdi, in Lake Michigan. Environ Biol Fishes 12:111–117

    Article  Google Scholar 

  • Hoekstra D, Janssen J (1986) Lateral line receptivity in the mottled sculpin (Cottus bairdi). Copeia 1986:91–96

    Article  Google Scholar 

  • Holzman R, Wainwright PC (2009) How to surprise a copepod: strike kinematics reduce hydrodynamic disturbance and increase stealth of suction-feeding fish. Limnol Oceanogr 54:2201–2212

    Article  Google Scholar 

  • Janssen J (1990) Localization of substrate vibrations by the mottled sculpin (Cottus bairdi). Copeia 1990:349–355

    Article  Google Scholar 

  • Janssen J (1997) Comparison of response distance to prey via the lateral line in the ruffe and yellow perch. J Fish Biol 51:921–930

    Article  Google Scholar 

  • Janssen J, Jones WR, Whang A, Oshel PE (1995) Use of the lateral line in particulate feeding in the dark by juvenile alewife (Alosa pseudoharengus). Can J Fish Aqua Sci 52:358–363

    Article  Google Scholar 

  • Johnson SE (1917) Structure and development of the sense organs of the lateral canal system of selachians (Mustelus canis and Squalus acanthias). J Comp Neurobiol 28:1–74

    Article  Google Scholar 

  • Kleerekoper H (1978) Chemoreception and its interaction with flow and light perception in the locomotion and orientation of some elasmobranchs. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates, and rays. U.S. Office of Naval Research, Arlington

    Google Scholar 

  • Kleerekoper H (1982) The role of olfaction in the orientation of fishes. In: Hara TJ (ed) Chemoreception in fishes: developments in aquaculture and fisheries science. Elsevier, Amsterdam, pp 201–225

    Google Scholar 

  • Liem KF, Bemis WE, Walker J, W.F., Grande L (2001) Functional Anatomy of the Vertebrates: an Evolutionary Perspective. Harcourt College Publishers, New York

    Google Scholar 

  • Limbaugh C (1963) Field Notes on Sharks. In: Gilbert PW (ed) Sharks and Survival. DC Heath and Company, Lexington, pp 63–94

    Google Scholar 

  • Lowry D, Motta PJ (2007) Ontogeny of feeding and cranial morphology in the whitespotted bambooshark Chiloscyllium plagiosum. Mar Biol 151:2013–2023

    Article  Google Scholar 

  • Lyon EP (1904) On rheotropism. I. Rheotropism in fishes. Am J Physiol 12:149–161

    Google Scholar 

  • Maruska KP (2001) Morphology of the mechanosensory lateral line system in elasmobranch fishes: ecological and behavioral considerations. Environ Biol Fishes 60:47–75

    Article  Google Scholar 

  • Maruska KP, Tricas TC (2004) Test of the mechanotactile hypothesis: neuromast morphology and response dynamics of mechanosensory lateral line primary afferents in the stingray. J Exp Biol 207:3463–3476

    Article  PubMed  Google Scholar 

  • Mathewson RF, Hodgson ES (1972) Klinotaxis and rheotaxis in orientation of sharks toward chemical stimuli. Comp Biochem Physiol 42:79–84

    Article  CAS  Google Scholar 

  • McComb DM, Tricas TC, Kajiura SM (2009) Enhanced visual fields in hammerhead sharks. J Exp Biol 212:4010–4018

    Article  CAS  PubMed  Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963

    Article  CAS  Google Scholar 

  • Montgomery JC, MacDonald JA (1987) Sensory tuning of lateral line receptors in antarctic fish to the movements of planktonic prey. Science 235:195–196

    Article  CAS  PubMed  Google Scholar 

  • Montgomery JC, MacDonald JA (1988) Lateral line function in antarctic fish related to the signals produced by planktonic prey. J Comp Physiol A 163:827–833

    Article  Google Scholar 

  • Moss SA (1972) Nurse shark pectoral fins: an unusual use. Am Midl Nat 88:496–497

    Article  Google Scholar 

  • Motta PJ, Hueter RE, Tricas TC, Summers AP (2002) Kinematic analysis of suction feeding in the nurse shark Ginglymostoma cirratum (Orectolobiformes, Ginglymostomidae). Copeia 2002:24–38

    Article  Google Scholar 

  • Motta PJ, Hueter RE, Tricas TC, Summers AP, Huber DR, Lowry D, Mara KR, Matott MP, Whitenack LB, Wintzer AP (2008) Functional morphology of the feeding apparatus, feeding constraint and suction performance in the nurse shark Ginglymostoma cirratum. J Morphol 269:1041–1055

    Article  PubMed  Google Scholar 

  • Müller U, Schwartz E (1982) Influence of single neuromasts on the prey localizing behavior of the surface feeding fish Aplocheilus lineatus. J Comp Physiol A 149:399–408

    Article  Google Scholar 

  • Nauwelaerts S, Wilga CD, Sanford CP, Lauder GV (2007) Hydrodynamics of prey capture in sharks: effects of substrate. J R Soc Interface 4:341–345

    Article  PubMed Central  PubMed  Google Scholar 

  • Northcutt RG (1978) Brain organization in the cartilaginous fishes. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates, and rays. Office of Naval Research Department of the Navy, Arlington, pp 117–193

    Google Scholar 

  • Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 17–78

    Chapter  Google Scholar 

  • Partridge BL, Pitcher TJ (1980) The sensory basis of fish schools: relative roles of lateral line and vision. J Comp Physiol A 135:315–325

    Article  Google Scholar 

  • Peach MB (2001) The dorso-lateral pit organs of the Port Jackson shark contribute sensory information for rheotaxis. J Fish Biol 59:696–704

    Article  Google Scholar 

  • Peach MB (2003a) The behavioral role of pit organs in the epaulette shark. J Fish Biol 62:793–802

    Article  Google Scholar 

  • Peach MB (2003b) Inter- and intraspecific variation in the distribution and number of pit organs (free neuromasts) of sharks and rays. J Morphol 256:89–102

    Article  PubMed  Google Scholar 

  • Peach MB, Marshall NJ (2000) The pit organs of elasmobranchs: a review. Philos Trans R Soc Lond B Biol Sci 355:1131–1134

    Article  CAS  PubMed  Google Scholar 

  • Peach MB, Rouse GW (2000) The morphology of the pit organs and lateral line canal neuromasts of Mustelus antarcticus (Chondrichthyes: Triakidae). J Mar Biol Assoc UK 80:155–162

    Article  Google Scholar 

  • Peach MB, Rouse GW (2004) Phylogenetic trends in the abundance and distribution of pit organs of elasmobranchs. Acta Zool 85:233–244

    Article  Google Scholar 

  • Pitcher TJ, Partridge BL, Wardle CS (1980) A blind fish can school. Science 194:963–965

    Article  Google Scholar 

  • Roberts BL (1978) Mechanoreceptors and the behavior of elasmobranch fishes with special reference to the acoustico-lateralis system. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates, and rays. U.S. Office of Naval Research, Arlington, pp 331–390

    Google Scholar 

  • Roberts BL, Ryan KP (1971) The fine structure of the lateral-line sense organs of dogfish. Proc R Soc Lond B Biol Sci 179:157–169

    Article  Google Scholar 

  • Sand A (1937) The mechanism of the lateral sense organs of fishes. Proc R Soc Lond B Biol Sci 23:472–495

    Article  Google Scholar 

  • Schwalbe MAB, Bassett DK, Webb JF (2012) Feeding in the dark: lateral-line-mediated prey detection in the peacock cichlid Aulonocara stuartgranti. J Exp Biol 215:2060–2071

    Article  PubMed  Google Scholar 

  • Tester AL, Kendall JI (1968) Cupulae in shark neuromasts: composition, origin, generation. Science 160:772–774

    Article  CAS  PubMed  Google Scholar 

  • Tester AL, Kendall JI (1969) Morphology of the lateralis canal system in shark genus Carcharhinus. Pac Sci 23:1–16

    Google Scholar 

  • Tester AL, Nelson GJ (1967) Free neuromasts (pit organs) in sharks. In: Gilbert PW, Mathewson RF, Rall DP (eds) Sharks, skates, and rays. John Hopkins Press, Baltimore, pp 503–531

    Google Scholar 

  • Viitasalo M, Kiørboe T, Flinkman J, Pedersen LW, Visser AW (1998) Predation vulnerability of planktonic copepods: consequences of predator foraging strategies and prey sensory abilities. Mar Ecol Prog Ser 175:129–142

    Article  Google Scholar 

  • Webb JF, Northcutt RG (1997) Morphology and distribution of pit organs and canal neuromasts in non-teleost bony fishes. Brain Behav Evol 50:139–151

    Article  CAS  PubMed  Google Scholar 

  • Weissert R, Von Campenhausen C (1981) Discrimination between stationary objects by the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143:375–381

    Article  Google Scholar 

  • Wilga CD, Sanford CP (2008) Suction generation in white-spotted bamboo sharks Chiloscyllium plagiosum. J Exp Biol 211:3128–3138

    Article  PubMed  Google Scholar 

  • Windsor SP, Norris SE, Cameron SM, Mallinson GD, Montgomery JC (2010a) The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: open water and heading towards a wall. J Exp Biol 213:3819–3831

    Article  PubMed  Google Scholar 

  • Windsor SP, Norris SE, Cameron SM, Mallinson GD, Montgomery JC (2010b) The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part II: gliding parallel to a wall. J Exp Biol 213:3832–3842

    Article  PubMed  Google Scholar 

  • Windsor SP, Paris J, De Parera TB (2011) No role for direct touch using the pectoral fins, as an information gathering strategy in a blind fish. J Comp Physiol A 197:321–327

    Article  Google Scholar 

  • Windsor SP, Tan D, Montgomery JC (2008) Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus). J Exp Biol 211:2950–2959

    Article  PubMed  Google Scholar 

  • Yoshizawa M, Goricki S, Soares D, Jeffery WR (2010) Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol 20:1631–1636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Robert Hueter and Philip Motta for helpful comments on the manuscript. Aspects of this work were supported by a University of South Florida Presidential Doctoral Fellowship, a Lerner-Gray Grant for Marine Research, an American Elasmobranch Society Donald R. Nelson Behavioral Research Award, and an American Society of Ichthyologists and Herpetologists Raney Fund Award to JMG, a collaborative National Science Foundation grant (IOS-0843440, IOS-0841478, and IOS-081502), and support from the Porter Family Foundation. This manuscript was prepared during JMG’s tenure as a Mote Postdoctoral Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayne M. Gardiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gardiner, J.M., Atema, J. (2014). Flow Sensing in Sharks: Lateral Line Contributions to Navigation and Prey Capture. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_5

Download citation

Publish with us

Policies and ethics